UOJ42/BZOJ3817 清华集训2014 Sum 类欧几里得
傳送門
令\(\sqrt r = x\)
考慮將\(-1^{\lfloor d \sqrt r \rfloor}\)魔改一下
它等于\(1-2 \times (\lfloor dx \rfloor \mod 2)\),也就等于\(1 - 2 \times \lfloor dx \rfloor + 4 \times \lfloor \frac{dx}{2} \rfloor\)
那么我們現在就要求\(\sum\limits_{i=1}^n \lfloor ix \rfloor\)的值,求\(\sum\limits_{i=1}^n \lfloor \frac{ix}{2} \rfloor\)方法一致
先說自己的一種low到炸精度的做法
首先\(x \geq 1\)時可以直接提出整數項,所以只要考慮\(x<1\)的情況
\(\sum\limits_{i=1}^n \lfloor ix \rfloor=\sum\limits_{i=1}^n \sum\limits_{j=1}^{\lfloor nx \rfloor} [ix > j] = \sum\limits_{j=1}^{\lfloor nx \rfloor}n-\lfloor \frac{j}{x} \rfloor=\lfloor nx \rfloor n - \sum\limits_{j=1}^{\lfloor nx \rfloor}\lfloor \frac{j}{x} \rfloor\)
然后因為超多次的實數除法精度直接爆掉
所以需要一個靠譜一點的做法,將上面的\(x\)轉換一下
考慮求解\(\sum\limits_{i=1}^n \lfloor \frac{ax+b}{c}i \rfloor\),其中\(a,b,c\)為整數
首先避免爆longlong,對\(a,b,c\)同除\(gcd(a,b,c)\)
然后將\(\frac{ax+b}{c}\)代入上面長式子中的\(x\),我們可以得到
\(\sum\limits_{i=1}^n \lfloor \frac{ax+b}{c}i \rfloor=\lfloor \frac{ax+b}{c} n \rfloor n - \sum\limits_{j=1}^{\lfloor nx \rfloor}\lfloor \frac{cj}{ax + b} \rfloor\),發現分母里有根號,有理化一下
就得到\(\sum\limits_{i=1}^n \lfloor \frac{ax+b}{c}i \rfloor = \lfloor \frac{ax+b}{c} n \rfloor n - \sum\limits_{j=1}^{\lfloor nx \rfloor}\lfloor \frac{c(ax-b)}{a^2r - b^2} j\rfloor\),這樣我們的系數都在整數域內,就不會出現太大的精度誤差了。
注意一點:當\(r\)為完全平方數的時候,這樣做是不可行的,因為上式中\(\sum\limits_{i=1}^n \lfloor ix \rfloor=\sum\limits_{i=1}^n \sum\limits_{j=1}^{\lfloor nx \rfloor} [ix > j]\)默認了\(x\)為無理數,若\(x\)為整數應當為\(\sum\limits_{i=1}^n \lfloor ix \rfloor=\sum\limits_{i=1}^n \sum\limits_{j=1}^{\lfloor nx \rfloor} [ix \geq j]\)。特判其實比較方便
#include<bits/stdc++.h> #define int long long #define ld long double //This code is written by Itst using namespace std;inline int read(){int a = 0;char c = getchar();bool f = 0;while(!isdigit(c) && c != EOF){if(c == '-')f = 1;c = getchar();}if(c == EOF)exit(0);while(isdigit(c)){a = (a << 3) + (a << 1) + (c ^ '0');c = getchar();}return f ? -a : a; }int N , R; ld P;inline int gcd(int a , int b){if(!b)return a;int r = a % b;while(r){a = b;b = r;r = a % b;}return b; }int solve(int a , int b , int c , int rg){if(rg <= 0)return 0;int t = gcd(a , gcd(b , c));a /= t;b /= t;c /= t;int cur = (a * P + b) / c;if(!cur)return (int)((a * P + b) / c * rg) * rg - solve(a * c , -b * c , a * a * R - b * b , (a * P + b) / c * rg);elsereturn cur * (rg * (rg + 1) / 2) + solve(a , b - c * cur , c , rg); }void work(){for(int T = read() ; T ; --T){N = read();R = read();P = sqrt(R);if((int)P * (int)P == R)if((int)P & 1)cout << (N & 1 ? -1 : 0) << endl;elsecout << N << endl;elsecout << N - 2 * solve(1 , 0 , 1 , N) + 4 * solve(1 , 0 , 2 , N) << '\n';} }signed main(){ #ifndef ONLINE_JUDGEfreopen("in" , "r" , stdin);freopen("out" , "w" , stdout); #endifwork();return 0; }轉載于:https://www.cnblogs.com/Itst/p/10218251.html
總結
以上是生活随笔為你收集整理的UOJ42/BZOJ3817 清华集训2014 Sum 类欧几里得的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: Redis源码剖析(十二)--客户端和服
- 下一篇: 前端调试工具Browser-sync(W