数学家们纠结一百多年的难题:这条裤子该怎么补?
來(lái)源:Quanta Magazine,編譯張二七
“老媽,我褲子上破了幾個(gè)洞,幫我縫一下吧!”
“沒問題,多大的洞啊?”
“洞的形狀都挺怪的,不過任意兩點(diǎn)的距離都不超過 1 厘米。”
媽媽翻出了一些碎布頭,形狀都是直徑 1 厘米的圓形,她認(rèn)為這樣應(yīng)該就足夠補(bǔ)上各種形狀的洞了。不過真的是這樣嗎?想要蓋住形狀各異,但最寬不超過 1 厘米的破洞,直徑 1 厘米的圓形補(bǔ)丁真的夠用嗎?
圓形的“補(bǔ)丁”
讓我們假設(shè)你的褲子上破了一個(gè)三角形的洞,這是一個(gè)邊長(zhǎng) 1 厘米的等邊三角形——因此三角形中任意兩點(diǎn)間的距離都不會(huì)超過 1 厘米,符合我們?cè)陂_頭對(duì)洞的要求。但是你會(huì)發(fā)現(xiàn),直徑 1 厘米的圓形補(bǔ)丁并不能完全蓋住這個(gè)洞。
直徑 1 厘米的圓形并不能完全覆蓋邊長(zhǎng)為 1 厘米的等邊三角形。(若無(wú)特殊標(biāo)注,本文圖片均來(lái)自 Quanta Magazine)
經(jīng)過簡(jiǎn)單的計(jì)算,你就能理解這個(gè)道理。圓的半徑是 0.5 厘米,但等邊三角形中心到頂點(diǎn)的距離是√3/3 ≈0.58 厘米——大于圓的半徑,這個(gè)圓當(dāng)然就無(wú)法覆蓋到三角形的頂角了。
當(dāng)然了,最保險(xiǎn)的方法就是準(zhǔn)備一大塊布,這樣什么洞都能補(bǔ)上了,就是有些浪費(fèi)。那么問題來(lái)了:能不能找到面積最小的一塊布,讓它能夠補(bǔ)上任意形狀的,寬不超過 1 厘米的洞呢?
萬(wàn)有覆蓋問題
在數(shù)學(xué)中,這被稱為“萬(wàn)有覆蓋問題”(universal covering problem)。這個(gè)問題是亨利·勒貝格(Henri Lebesgue)在 1914 年寫給另一位數(shù)學(xué)家朱利葉斯·帕爾(Julius Pál)的一封信中提出的。這個(gè)問題的說(shuō)法有很多種,但它們的核心都是寬度為1,也就是在平面上有一個(gè)圖形,圖形中任意兩點(diǎn)間的距離都不超過1。勒貝格的萬(wàn)有覆蓋問題,就是要求找到一個(gè)面積最小的圖形,使其能夠“覆蓋”所有寬度為 1 的圖形。
這個(gè)看似簡(jiǎn)單的問題其實(shí)已經(jīng)困擾了數(shù)學(xué)家們一百多年,甚至到了現(xiàn)在,他們依然沒有找到最終答案。如果只要求能夠覆蓋所有寬度為 1 的洞,那么我們有很多的選擇,但要找出面積最小的那個(gè)就很困難了。
為了討論這個(gè)問題,讓我們先假想出任意一個(gè)寬度為 1 的形狀R,雖然不知道它長(zhǎng)什么樣子,但其中一定存在相距 1 單位長(zhǎng)度的兩個(gè)點(diǎn),我們稱之為A點(diǎn)和B點(diǎn)。
那么現(xiàn)在想象形狀R中的第三個(gè)點(diǎn)C,C可能存在于哪些區(qū)域呢?首先,C點(diǎn)到A點(diǎn)的距離一定不能超過1。也就是說(shuō),我們以A為圓心,1 單位長(zhǎng)度為半徑畫一個(gè)圓A,C點(diǎn)一定在這個(gè)圓內(nèi)(或圓周上)。
同樣的,C點(diǎn)到B點(diǎn)的距離也不能超過 1 單位長(zhǎng)度,那么我們以B點(diǎn)為圓心,1 為半徑作圓B的話,C點(diǎn)也應(yīng)該在這個(gè)圓的范圍內(nèi)。
由于C點(diǎn)應(yīng)該既在圓A中,也在圓B中,那么C點(diǎn)就應(yīng)該落于兩圓的重合區(qū),也就是下圖這個(gè)“橄欖球”形狀中。
不止C點(diǎn),形狀R中的其他點(diǎn)也需要滿足相同的條件,因此形狀R中的所有點(diǎn)都應(yīng)落在上圖的“橄欖球”中。換句話說(shuō),這個(gè)形狀能夠覆蓋所有可能的形狀R,那么它就是一個(gè)“萬(wàn)有覆蓋”圖形。
不過這塊“橄欖球”布料還是太大了,讓我們?cè)囍舻粢徊糠帧?/p>
首先,添加兩條與線段 AB 平行的直線(如下圖),使其與 AB 的距離均為1/2,因此這兩條直線間的距離就是 1 單位長(zhǎng)度。
現(xiàn)在我們得到了這樣的兩塊紅色區(qū)域Ⅰ和Ⅱ,它們之間的最短距離為1。或者說(shuō),Ⅰ中的任意一點(diǎn),與Ⅱ中的任意一點(diǎn)的距離一定大于1。
想象一下,如果形狀R包含了Ⅰ區(qū)域中的某些點(diǎn),那么這些點(diǎn)到Ⅱ區(qū)域中任意一點(diǎn)的距離一定會(huì)大于1,這就違背了我們對(duì)形狀R的要求。也就是說(shuō),此時(shí)的形狀R一定不能與Ⅱ區(qū)域重疊。因此,在Ⅰ和Ⅱ區(qū)域中,我們就可以剪掉一個(gè)了。這樣得到的“美妝蛋”一樣的形狀,依然是一個(gè)萬(wàn)有覆蓋圖形。
在裁剪之前,我們用到的“布料”面積是2π/3-√3/2≈ 1.228,而剪完后,“布料”的面積變成了π/2-1/2 ≈ 1.071。請(qǐng)記住我們得到這個(gè)“美妝蛋”的過程——從最容易想到的圖形出發(fā),通過不斷裁剪多余的部分,我們就能獲得面積更小的萬(wàn)有覆蓋圖形。
這也正是數(shù)學(xué)家們探索面積最小的萬(wàn)有覆蓋圖形的方法,不過他們是從六邊形開始的。
“帕爾六邊形”
還記得勒貝格的那位數(shù)學(xué)家朋友帕爾嗎?在收到勒貝格的來(lái)信后不久,帕爾就利用等寬曲線的性質(zhì)證明,對(duì)邊相距為 1 的正六邊形就能做到萬(wàn)有覆蓋(等寬曲線是指曲線上任何一對(duì)平行切線的距離都相等的曲線,圓就是最常見的一種等寬曲線)。
“帕爾六邊形”的面積比我們的“美妝蛋“更小了,其面積為√3/2≈0. 866。不過,帕爾并不滿足于此,他發(fā)現(xiàn)這個(gè)六邊形還能再剪掉幾個(gè)角。
我們知道,正六邊形的旋轉(zhuǎn)對(duì)稱角是 60°。那么將另一個(gè)六邊形繞中心旋轉(zhuǎn) 30°,再疊在原先的六邊形上,我們就能給原先的六邊形切出六個(gè)角,對(duì)應(yīng)下圖中的紅色區(qū)域。
還記得我們是如何將“橄欖球”剪掉一個(gè)角,變成“美妝蛋”的嗎?接下來(lái)的步驟和我們之前的裁剪過程非常相似。
首先,每一組相對(duì)的小三角間的距離都是 1 單位長(zhǎng)度,因此每一對(duì)紅色三角中都有一個(gè)可以被裁去。我們當(dāng)然希望能夠剪掉三個(gè)——也就是每對(duì)中的一個(gè)。然而,如果真的剪掉三個(gè)角的話,這個(gè)圖形就無(wú)法滿足萬(wàn)有覆蓋條件了。
根據(jù)六邊形的對(duì)稱性,如果某個(gè)圖形占據(jù)了六個(gè)小三角中的三個(gè)時(shí),它可能會(huì)出現(xiàn)兩種情況:連續(xù)的三個(gè)角(左圖),或是相間的三個(gè)角(右圖)。我們?cè)趫D里用藍(lán)色和紅色來(lái)表示這兩種情況。
如果我們的形狀R占用了左圖中的三個(gè)藍(lán)色三角區(qū)域,那么我們就無(wú)法在剪掉右側(cè)圖形中的三個(gè)紅色三角的情況下,將其覆蓋。反之也是一樣,如果我們剪掉了左側(cè)圖形中的三個(gè)紅色三角,那么當(dāng)形狀R占據(jù)了右圖中藍(lán)色區(qū)域的三個(gè)三角時(shí),新的圖形也無(wú)法將R覆蓋了。
不過就算不能同時(shí)修剪掉三個(gè)角,我們至少可以裁掉兩個(gè)。如果我們剪掉既不相鄰也不相對(duì)的兩個(gè)紅色三角形區(qū)域的話,就不會(huì)出現(xiàn)上述的問題了,而這就是帕爾所做的。
帕爾剪掉了六邊形的兩個(gè)角,這樣得到的新圖形仍然能夠覆蓋所有寬度為 1 的形狀。這個(gè)新圖形的面積是2-2√3/3≈0. 8453,比帕爾六邊形的面積減少了約 0.0207。
不斷地修剪
接下來(lái)的修剪工作就愈發(fā)艱難了。在帕爾的工作基礎(chǔ)上,1936 年,數(shù)學(xué)家羅蘭·斯普拉格(Roland Sprague)移除了面積為0. 001的一塊小碎片。隨后,在 1992 年,H·C·漢森(H. C. Hansen)從右下角和左下角裁去了0. 00000000004個(gè)平方單位的面積(小數(shù)點(diǎn)后 10 個(gè)0,不用數(shù)了)。
2014 年,一位本職是軟件工程師的業(yè)余數(shù)學(xué)家(雖然說(shuō)是業(yè)余,但是人家也有數(shù)學(xué)的博士學(xué)位)菲利普·吉布斯(PhilipGibbs)選擇了一種簡(jiǎn)單粗暴的解答思路——先看答案,再想過程。他用計(jì)算機(jī)隨機(jī)生成了 200 個(gè)寬度為 1 的圖形,把他們疊到一起,然后以其覆蓋的形狀為線索,找出了對(duì)過去萬(wàn)有覆蓋圖形的頂部的修整方法。他的證明于 2015 年發(fā)表,該論文將此前的萬(wàn)有覆蓋圖形再次縮小了 0.0000224 平方單位。
菲利普·吉布斯與帕爾六邊形(圖片來(lái)源:Philip Gibbs)
這項(xiàng)成果給了吉布斯很大的信心,在他 2018 年發(fā)表的另一篇文章中,他又剪掉了“一大塊”區(qū)域,使萬(wàn)有覆蓋面積從 0.8441153 降到了0. 84409359 平方單位。
灰色的部分是吉布斯裁剪的角(圖片來(lái)源:Philip Gibbs)
從 1914 年至今,數(shù)學(xué)家們一直在尋找最小的萬(wàn)有覆蓋圖形,他們能走多遠(yuǎn)呢?2005 年,彼得·布拉斯(Peter Brass)和梅爾博德·沙里夫(Mehrbod Sharifi)證明,萬(wàn)有覆蓋面積不能小于 0.832 平方單位。因此我們知道,留給數(shù)學(xué)家裁剪的區(qū)域已經(jīng)不多了。
不過大家也可以試著提出一種新技術(shù),又或是裁剪的新起點(diǎn),或許你也能像那位業(yè)余數(shù)學(xué)家一樣,更加逼近最小的萬(wàn)有覆蓋圖形。
總結(jié)
以上是生活随笔為你收集整理的数学家们纠结一百多年的难题:这条裤子该怎么补?的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 24万笔!羊毛党跑去京东摸了"年终奖"
- 下一篇: 孙正义持续受挫?OYO将在印度和中国裁员