内存问题分析的利器——valgrind的memcheck
? ? ? ? 在《內存、性能問題分析的利器——valgrind》一文中我們簡單介紹了下valgrind工具集,本文將使用memcheck工具分析各種內存問題。(轉載請指明出于breaksoftware的csdn博客)
? ? ? ? 本文所有的代碼都是使用g++ -O0 -g mem_error.c -o mem_erro編譯;分析都是使用valgrind --tool=memcheck ./mem_error指定(除非特殊說明)。
寫違例
#include <stdlib.h>int main() {const int array_count = 4;int* p = malloc(array_count * sizeof(int));p[array_count] = 0; // Illegal read?free(p);return 0;
}
? ? ? ? 上述代碼只分配了4個int型大小的空間,但是第6行要往該空間之后的空間寫入數據,這就造成了寫違例。使用valgrind分析會顯示
==18100== Invalid write of size 4
==18100== at 0x400658: main (mem_error.c:6)
==18100== Address 0x51e0050 is 0 bytes after a block of size 16 alloc'd
==18100== at 0x4C27BC3: malloc (vg_replace_malloc.c:299)
==18100== by 0x40063F: main (mem_error.c:5)
? ? ? ? 第一行顯示有4個字節被違例寫入,第三行顯示寫入的位置在分配的16個字節之后。
讀違例
#include <stdlib.h>int main() {const int array_count = 4;int* p = malloc(array_count * sizeof(int));int error_num = p[array_count]; // Illegal readfree(p);return 0;
}
? ? ? ? 錯誤的位置和上例一樣,區別在于這次是讀取不合法的地址的數據。使用valgrind分析顯示
==31461== Invalid read of size 4
==31461== at 0x400658: main (mem_error.c:6)
==31461== Address 0x51e0050 is 0 bytes after a block of size 16 alloc'd
==31461== at 0x4C27BC3: malloc (vg_replace_malloc.c:299)
==31461== by 0x40063F: main (mem_error.c:5)
? ? ? ? 第一行顯示有4個字節被違例讀取,第三行顯示讀取的位置在分配的16個字節之后。
使用未初始化變量
? ? ? ? 這是初學C/C++編程的人非常容易犯的錯誤。
#include <stdlib.h>
#include <stdio.h>int main() {const int array_count = 4;int* p = malloc(array_count * sizeof(int));printf("%d", p[array_count - 1]);free(p);int undefine_num;printf("%d", undefine_num);return 0;
}
? ? ? ? 第7行和第11行分別訪問了堆上、棧上未初始化的變量。valgrind分析顯示
==24104== Conditional jump or move depends on uninitialised value(s)
==24104== at 0x4E79F7F: vfprintf (in /home/opt/gcc-4.8.2.bpkg-r4/gcc-4.8.2.bpkg-r4/lib64/libc-2.18.so)
==24104== by 0x4E837A8: printf (in /home/opt/gcc-4.8.2.bpkg-r4/gcc-4.8.2.bpkg-r4/lib64/libc-2.18.so)
==24104== by 0x4006BA: main (mem_error.c:7)
==24104==
==24104== Conditional jump or move depends on uninitialised value(s)
==24104== at 0x4E79E37: vfprintf (in /home/opt/gcc-4.8.2.bpkg-r4/gcc-4.8.2.bpkg-r4/lib64/libc-2.18.so)
==24104== by 0x4E837A8: printf (in /home/opt/gcc-4.8.2.bpkg-r4/gcc-4.8.2.bpkg-r4/lib64/libc-2.18.so)
==24104== by 0x4006DA: main (mem_error.c:11)
==24104==
? ? ? ? 雖然這個報告已經非常詳細,但是我們還可以給valgrind增加--track-origins=yes,以打印問題出現在哪個結構上。當然這也會導致valgrind分析的比較慢
==29911== Conditional jump or move depends on uninitialised value(s)
==29911== at 0x4E79F7F: vfprintf (in /home/opt/gcc-4.8.2.bpkg-r4/gcc-4.8.2.bpkg-r4/lib64/libc-2.18.so)
==29911== by 0x4E837A8: printf (in /home/opt/gcc-4.8.2.bpkg-r4/gcc-4.8.2.bpkg-r4/lib64/libc-2.18.so)
==29911== by 0x4006BA: main (mem_error.c:7)
==29911== Uninitialised value was created by a heap allocation
==29911== at 0x4C27BC3: malloc (vg_replace_malloc.c:299)
==29911== by 0x40068F: main (mem_error.c:6)
==29911==
==29911== Conditional jump or move depends on uninitialised value(s)
==29911== at 0x4E79E37: vfprintf (in /home/opt/gcc-4.8.2.bpkg-r4/gcc-4.8.2.bpkg-r4/lib64/libc-2.18.so)
==29911== by 0x4E837A8: printf (in /home/opt/gcc-4.8.2.bpkg-r4/gcc-4.8.2.bpkg-r4/lib64/libc-2.18.so)
==29911== by 0x4006DA: main (mem_error.c:11)
==29911== Uninitialised value was created by a stack allocation
==29911== at 0x400670: main (mem_error.c:4)
在系統函數中使用未初始化變量
? ? ? ? 我們看一個稍微復雜點的例子。下例中,test函數操作的是一個未初始化的變量,所以其結果是不可預知的。
#include <stdlib.h>
#include <stdio.h>void test(int n) {n = n + 1;
}int main() {const int array_count = 4;int* p = malloc(array_count * sizeof(int));test(p[array_count - 1]);free(p);return 0;
}
? ? ? ? valgrind并不知道上述代碼的作者想表達什么,所以它并沒有報錯
==28259== Command: ./mem_error
==28259==
==28259==
==28259== HEAP SUMMARY:
==28259== in use at exit: 0 bytes in 0 blocks
==28259== total heap usage: 1 allocs, 1 frees, 16 bytes allocated
==28259==
==28259== All heap blocks were freed -- no leaks are possible
==28259==
==28259== For counts of detected and suppressed errors, rerun with: -v
==28259== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)
? ? ? ?但是如果錯誤調用是針對系統函數。valgrind是知道系統函數的輸入要求的,于是就可以判定這種行為違例。我們稍微改下代碼
#include <stdlib.h>
#include <stdio.h>void test(int n) {n = n + 1;write(stdout, "xxx", n);
}int main() {const int array_count = 4;int* p = malloc(array_count * sizeof(int));test(p[array_count - 1]);free(p);return 0;
}
? ? ? ? valgrind就會分析出第6行系統方法write的第三個參數未初始化。
==4344== Syscall param write(count) contains uninitialised byte(s)
==4344== at 0x4F0BED0: __write_nocancel (in /home/opt/gcc-4.8.2.bpkg-r4/gcc-4.8.2.bpkg-r4/lib64/libc-2.18.so)
==4344== by 0x4006CA: test (mem_error.c:6)
==4344== by 0x40070D: main (mem_error.c:12)
釋放空間出錯
? ? ? ? 我們可能重復釋放同一段空間,或者給釋放函數傳入不是堆上的地址,或者使用了不對稱的方法申請釋放函數。這類錯誤發生在free,delete,delete[]和realloc上。
? ? ? ? 反復free同一段空間
#include <stdlib.h>int main() {const int array_count = 4;int* p = malloc(array_count * sizeof(int));free(p);free(p);return 0;
}
? ? ? ?使用valgrind分析,報告顯示第7行釋放了第6行已經釋放了的空間,這個空間是在第5行申請的。
==6537== Invalid free() / delete / delete[] / realloc()
==6537== at 0x4C28CBD: free (vg_replace_malloc.c:530)
==6537== by 0x40065B: main (mem_error.c:7)
==6537== Address 0x51e0040 is 0 bytes inside a block of size 16 free'd
==6537== at 0x4C28CBD: free (vg_replace_malloc.c:530)
==6537== by 0x40064F: main (mem_error.c:6)
==6537== Block was alloc'd at
==6537== at 0x4C27BC3: malloc (vg_replace_malloc.c:299)
==6537== by 0x40063F: main (mem_error.c:5)
? ? ? ? 釋放一個不是堆的空間
#include <stdlib.h>int main() {int n = 1;int* p = &n;free(p);return 0;
}
? ? ? ? valgrind會報告錯誤的釋放棧上空間
==32411== Invalid free() / delete / delete[] / realloc()
==32411== at 0x4C28CBD: free (vg_replace_malloc.c:530)
==32411== by 0x4005F2: main (mem_error.c:6)
==32411== Address 0x1fff000234 is on thread 1's stack
==32411== in frame #1, created by main (mem_error.c:3)
? ? ? ? 申請釋放方法不對稱
? ? ? ? 對稱的方法是指:
- new使用delete釋放
- new[]使用delete[]釋放
- alloc類函數,如malloc,realloc等使用free釋放
#include <stdlib.h>int main() {int* p = new int(1);free(p);return 0;
}
? ? ? ? valgrind可以分析出這種不對稱調用——new申請空間,free釋放空間。
==5666== Mismatched free() / delete / delete []
==5666== at 0x4C28CBD: free (vg_replace_malloc.c:530)
==5666== by 0x400737: main (mem_error.c:5)
==5666== Address 0x59fc040 is 0 bytes inside a block of size 4 alloc'd
==5666== at 0x4C281E3: operator new(unsigned long) (vg_replace_malloc.c:334)
==5666== by 0x400721: main (mem_error.c:4)
空間覆蓋
? ? ? ? 當我們操作內存時,可能會發生內存覆蓋。
#include <stdlib.h>
#include <string.h> int main() {const int array_size = 8;char p[array_size] = {0};memcpy(p + 1, p, sizeof(char) * array_size);return 0;
}
? ? ? ? 這段代碼的目的空間覆蓋了源空間
? ? ? ? valgrind分析的報告也說明了這個錯誤
==25991== Source and destination overlap in memcpy(0x1fff000231, 0x1fff000230, 8)
==25991== at 0x4C2BFEC: memcpy@@GLIBC_2.14 (vg_replace_strmem.c:1022)
==25991== by 0x4006E2: main (mem_error.c:7)
可疑的參數
? ? ? ? 在C/C++中,有符號數的負數的二進制最高位是0x1。如果把一個負數看成一個無符號類型的數,則可以表達出極大數,比如0xFFFFFFFF(無符號值4294967295,有符號值-1),因為它們的底層二進制值是一致的。
? ? ? ? 有事我們在調用內存分配時,不小心將空間大小設置為一個負數,就要求申請一個極大的空間,這明顯是有問題的。
#include <stdlib.h>int main() {const int array_size = -1;void* p = malloc(array_size);free(p);return 0;
}
? ? ? ? 這個時候valgrind就會檢測出參數可疑
==3364== Argument 'size' of function malloc has a fishy (possibly negative) value: -1
==3364== at 0x4C27BC3: malloc (vg_replace_malloc.c:299)
==3364== by 0x40070A: main (mem_error.c:5)
內存泄露
? ? ? ? 內存泄露是比較常見的問題,往往也是非常難以排查的問題。
#include <stdlib.h>int main() {const int array_size = 32; void* p = malloc(array_size);return 0;
}
? ? ? ? 這次我們給valgrind增加選項--leak-check=full以顯示出詳細信息
valgrind --tool=memcheck --leak-check=full ./mem_error
? ? ? ? valgrind分析出第5行分配的空間沒有釋放。其中definitely lost是指“確認泄露”,
==17393== HEAP SUMMARY:
==17393== in use at exit: 32 bytes in 1 blocks
==17393== total heap usage: 1 allocs, 0 frees, 32 bytes allocated
==17393==
==17393== 32 bytes in 1 blocks are definitely lost in loss record 1 of 1
==17393== at 0x4C27BC3: malloc (vg_replace_malloc.c:299)
==17393== by 0x4006B8: main (mem_error.c:5)
==17393==
==17393== LEAK SUMMARY:
==17393== definitely lost: 32 bytes in 1 blocks
==17393== indirectly lost: 0 bytes in 0 blocks
==17393== possibly lost: 0 bytes in 0 blocks
==17393== still reachable: 0 bytes in 0 blocks
==17393== suppressed: 0 bytes in 0 blocks
總結
以上是生活随笔為你收集整理的内存问题分析的利器——valgrind的memcheck的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 内存、性能问题分析的利器——valgra
- 下一篇: 动态执行流程分析和性能瓶颈分析的利器——