android 动态人脸识别码,android OpenCV研究之动态人脸识别
隨著直播漸漸的火起來,像抱著直播大腿的其他功能也漸漸的火起來了,比如說人臉識別。說起人臉識別用處甚廣,比如說有以這個功能為核心的app:美顏相機、美圖秀秀、SNOW等等,但是美顏相機和美圖秀秀是用的國內SDK《Face++》來做的,這個sdk呢好像是他們自己的后臺進行識別并不是app本身做識別。這樣就跟我們今天要了解的動態識別不是很對路,肯定不能拿到攝像頭的一幀畫面去調一次接口再接回參數吧,這樣性能肯定不行。所以今天就拿SNOW的例子來說,雖然我不知道他是用什么做的,但是我們可以用openCV也能實現。
我們先看看效果圖:
實現步驟如下:
2、然后新建個項目我這里以studio里為基準,在main目錄里面新建jniLibs文件夾,為什么叫jniLibs呢,因為這是調用c庫的默認文件夾命名,當然你也可以命名其他的,但是需要在build里面指定這個文件夾。好了,打開我們剛才下載的文件,然后一次打開sdk\native\libs,最后把libs目錄里面的所有文件夾拷貝到jniLibs里面去。請看圖:
3、加好jniLibs之后呢還需要導入一個module,在studio里面點擊file->new->import module->導入module目錄是剛才下載的sdk\java這個目錄。請看圖:
4、導入之后呢右鍵項目打開open module setting選項,在app選項里點擊Dependencies這個,然后點擊最右邊的+號把剛剛導入的module加進去。請看圖:
5、現在開始寫代碼了,這里我把需要寫的代碼文件會一一貼出來,下面請看圖:
首先是MainActivity的代碼:
package com.wyw.facedemo;
import android.content.Context;
import android.os.Bundle;
import android.support.v7.app.AppCompatActivity;
import android.util.Log;
import android.view.View;
import android.view.WindowManager;
import android.widget.Button;
import android.widget.RelativeLayout;
import org.opencv.android.CameraBridgeViewBase;
import org.opencv.android.JavaCameraView;
import org.opencv.android.OpenCVLoader;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.MatOfRect;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.objdetect.CascadeClassifier;
import java.io.File;
import java.io.FileOutputStream;
import java.io.InputStream;
public class MainActivity extends AppCompatActivity implements CameraBridgeViewBase.CvCameraViewListener {
private CameraBridgeViewBase openCvCameraView;
private CascadeClassifier cascadeClassifier;
//圖像人臉小于高度的多少就不檢測
private int absoluteFaceSize;
//臨時圖像對象
private Mat matLin;
//最終圖像對象
private Mat mat;
//前置攝像頭
public static int CAMERA_FRONT = 0;
//后置攝像頭
public static int CAMERA_BACK = 1;
private int camera_scene = CAMERA_BACK;
private void initializeOpenCVDependencies() {
try {
// Copy the resource into a temp file so OpenCV can load it
InputStream is = getResources().openRawResource(R.raw.lbpcascade_frontalface);
File cascadeDir = getDir("cascade", Context.MODE_PRIVATE);
File mCascadeFile = new File(cascadeDir, "lbpcascade_frontalface.xml");
FileOutputStream os = new FileOutputStream(mCascadeFile);
byte[] buffer = new byte[4096];
int bytesRead;
while ((bytesRead = is.read(buffer)) != -1) {
os.write(buffer, 0, bytesRead);
}
is.close();
os.close();
// Load the cascade classifier
cascadeClassifier = new CascadeClassifier(mCascadeFile.getAbsolutePath());
} catch (Exception e) {
Log.e("OpenCVActivity", "Error loading cascade", e);
}
// And we are ready to go
openCvCameraView.enableView();
}
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
getWindow().addFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);
setContentView(R.layout.activity_main);
final RelativeLayout relativeLayout = (RelativeLayout) findViewById(R.id.relative);
openCvCameraView = new JavaCameraView(this, CameraBridgeViewBase.CAMERA_ID_FRONT);
openCvCameraView.setCvCameraViewListener(this);
final Button button = new Button(MainActivity.this);
button.setText("切換攝像頭");
button.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
if (camera_scene == CAMERA_FRONT) {//如果是前置攝像頭就切換成后置
relativeLayout.removeAllViews();
openCvCameraView.disableView();
openCvCameraView = null;
cascadeClassifier = null;
openCvCameraView = new JavaCameraView(MainActivity.this, CameraBridgeViewBase.CAMERA_ID_BACK);
openCvCameraView.setCvCameraViewListener(MainActivity.this);
openCvCameraView.setCameraIndex(CameraBridgeViewBase.CAMERA_ID_BACK);//后置攝像頭
camera_scene = CAMERA_BACK;
relativeLayout.addView(openCvCameraView);
relativeLayout.addView(button);
initializeOpenCVDependencies();
} else {
relativeLayout.removeAllViews();
openCvCameraView.disableView();
openCvCameraView = null;
cascadeClassifier = null;
openCvCameraView = new JavaCameraView(MainActivity.this, CameraBridgeViewBase.CAMERA_ID_FRONT);
openCvCameraView.setCvCameraViewListener(MainActivity.this);
openCvCameraView.setCameraIndex(CameraBridgeViewBase.CAMERA_ID_FRONT);//前置攝像頭
camera_scene = CAMERA_FRONT;
relativeLayout.addView(openCvCameraView);
relativeLayout.addView(button);
initializeOpenCVDependencies();
}
}
});
relativeLayout.addView(openCvCameraView);
relativeLayout.addView(button);
if (camera_scene == CAMERA_FRONT) {
openCvCameraView.setCameraIndex(CameraBridgeViewBase.CAMERA_ID_FRONT);//前置攝像頭
} else if (camera_scene == CAMERA_BACK) {
openCvCameraView.setCameraIndex(CameraBridgeViewBase.CAMERA_ID_BACK);//后置攝像頭
}
}
@Override
public void onCameraViewStarted(int width, int height) {
matLin = new Mat(height, width, CvType.CV_8UC4);//臨時圖像
// 人臉小于高度的百分之30就不檢測
absoluteFaceSize = (int) (height * 0.3);
}
@Override
public void onCameraViewStopped() {
}
@Override
public Mat onCameraFrame(Mat aInputFrame) {
//轉置函數,將圖像翻轉(順時針90度)
Core.transpose(aInputFrame, matLin);
if (camera_scene == CAMERA_FRONT) {//前置攝像頭
//轉置函數,將圖像翻轉(對換)
Core.flip(matLin, aInputFrame, 1);
//轉置函數,將圖像順時針順轉(對換)
Core.flip(aInputFrame, matLin, 0);
mat = matLin;
} else if (camera_scene == CAMERA_BACK) {//后置攝像頭
//轉置函數,將圖像翻轉(對換)
Core.flip(matLin, aInputFrame, 1);
mat = aInputFrame;
}
MatOfRect faces = new MatOfRect();
Log.i("123456", "absoluteFaceSize = " + absoluteFaceSize);
// Use the classifier to detect faces
if (cascadeClassifier != null) {
cascadeClassifier.detectMultiScale(mat, faces, 1.1, 1, 1,
new Size(absoluteFaceSize, absoluteFaceSize), new Size());
}
// 檢測出多少個
Rect[] facesArray = faces.toArray();
for (int i = 0; i < facesArray.length; i++) {
Log.i("123456", "facesArray[i].tl()坐上坐標 == " + facesArray[i].tl() + " facesArray[i].br() == 右下坐標" + facesArray[i].br());
Core.rectangle(mat, facesArray[i].tl(), facesArray[i].br(), new Scalar(0, 255, 0, 255), 3);
}
return mat;
}
@Override
public void onResume() {
super.onResume();
if (!OpenCVLoader.initDebug()) {
Log.e("log_wons", "OpenCV init error");
// Handle initialization error
}
initializeOpenCVDependencies();
//OpenCVLoader.initAsync(OpenCVLoader.OPENCV_VERSION_2_4_6, this, mLoaderCallback);
}
}
然后是layout的xml代碼:
現在是raw文件夾里面的xml(這個xml是圖片解析出來進行對比校驗人臉的模型庫)由于這個文件有一千多行就不貼了,如有需要請去下載本demo查看!當然也可以去你下載的openCV的sdk里面拿,目錄是\samples\face-detection\res\raw。請看圖:
最后就是AndroidManifest文件了:
做到這一步就趕緊把你的代碼運行起來吧!!本篇博客就到這里,如果有有疑問的歡迎留言討論。同時希望大家多多關注我的博客,多多支持我。
總結
以上是生活随笔為你收集整理的android 动态人脸识别码,android OpenCV研究之动态人脸识别的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 为啥复仇者联盟系列电影在中国能取得这么大
- 下一篇: 补牙一般多少钱啊?