为x86 CPU自动调度神经网络
為x86 CPU自動調度神經網絡
對特定設備和工作負載進行自動調試對于獲得最佳性能至關重要。這是有關如何使用自動調度器為x86 CPU調試整個神經網絡的文檔。
為了自動調試神經網絡,將網絡劃分為小的子圖,并對其進行獨立調試。每個子圖被視為一個搜索任務。任務調度程序可以對時間進行分片,并為這些任務動態分配時間資源。任務調度程序可以預測每個任務對端到端執行時間的影響,并優先調度可以最大程度地減少執行時間的任務。
對于每個子圖,使用compute聲明tvm/python/topi獲取張量表達式形式的計算DAG。然后,使用自動調度器來構造此DAG的搜索空間,并搜索良好的調度(低級優化)。
與依靠手動模板定義搜索空間的基于模板的autotvm不同,自動調度程序不需要任何調度模板。換句話說,自動調度程序僅在tvm/python/topi中使用計算聲明,而不使用現有的調度模板。
注意,本文無法在Windows或最新版本的macOS上運行。要使其運行,需要將本文的內容包裝在一個塊中。if name == “main”:
import numpy as np
import tvm
from tvm import relay, auto_scheduler
import tvm.relay.testing
from tvm.contrib import graph_runtime
定義網絡
首先,需要使用中繼前端API定義網絡。可以加載一些預定義的網絡tvm.relay.testing。還可以從MXNet,ONNX,PyTorch和TensorFlow加載模型。
對于卷積神經網絡,盡管自動調度程序可以在任何布局下正常工作,但使用NHWC布局通常可以實現最佳性能。還使用自動調度程序對NHWC布局實施了更多優化。因此,建議將模型轉換為NHWC布局以使用自動調度程序。可以在TVM中使用ConvertLayout pass進行布局轉換。
def get_network(name, batch_size, layout=“NHWC”, dtype=“float32”):
“”“Get the symbol definition and random weight of a network”""
# auto-scheduler prefers NHWC layout
if layout == "NHWC":image_shape = (224, 224, 3)
elif layout == "NCHW":image_shape = (3, 224, 224)
else:raise ValueError("Invalid layout: " + layout)input_shape = (batch_size,) + image_shape
output_shape = (batch_size, 1000)if name.startswith("resnet-"):n_layer = int(name.split("-")[1])mod, params = relay.testing.resnet.get_workload(num_layers=n_layer,batch_size=batch_size,layout=layout,dtype=dtype,image_shape=image_shape,)
elif name.startswith("resnet3d-"):n_layer = int(name.split("-")[1])mod, params = relay.testing.resnet.get_workload(num_layers=n_layer,batch_size=batch_size,layout=layout,dtype=dtype,image_shape=image_shape,)
elif name == "mobilenet":mod, params = relay.testing.mobilenet.get_workload(batch_size=batch_size, layout=layout, dtype=dtype, image_shape=image_shape)
elif name == "squeezenet_v1.1":assert layout == "NCHW", "squeezenet_v1.1 only supports NCHW layout"mod, params = relay.testing.squeezenet.get_workload(version="1.1",batch_size=batch_size,dtype=dtype,image_shape=image_shape,)
elif name == "inception_v3":input_shape = (batch_size, 3, 299, 299) if layout == "NCHW" else (batch_size, 299, 299, 3)mod, params = relay.testing.inception_v3.get_workload(batch_size=batch_size, dtype=dtype)
elif name == "mxnet":# an example for mxnet modelfrom mxnet.gluon.model_zoo.vision import get_modelassert layout == "NCHW"block = get_model("resnet50_v1", pretrained=True)mod, params = relay.frontend.from_mxnet(block, shape={"data": input_shape}, dtype=dtype)net = mod["main"]net = relay.Function(net.params, relay.nn.softmax(net.body), None, net.type_params, net.attrs)mod = tvm.IRModule.from_expr(net)return mod, params, input_shape, output_shape
# Define the neural network and compilation target.
# If the target machine supports avx512 instructions, replace the
# “llvm -mcpu=core-avx2” with "llvm -mcpu=skylake-avx512"
network = “resnet-50”
batch_size = 1
layout = “NHWC”
target = tvm.target.Target(“llvm -mcpu=core-avx2”)
dtype = “float32”
log_file = “%s-%s-B%d-%s.json” % (network, layout, batch_size, target.kind.name)
提取搜索任務
接下來,從網絡中提取搜索任務及其權重。任務的權重是整個網絡中任務子圖的出現次數。通過使用權重,可以將網絡的端到端延遲近似為sum(latency[t] * weight[t]),其中latency[t]是任務的延遲,weight[t]是任務的權重。任務調度程序只會優化此目標。
# Extract tasks from the network
print(“Extract tasks…”)
mod, params, input_shape, output_shape = get_network(network, batch_size, layout, dtype=dtype)
tasks, task_weights = auto_scheduler.extract_tasks(mod[“main”], params, target)
for idx, task in enumerate(tasks):
print("========== Task %d (workload key: %s) ==========" % (idx, task.workload_key))
print(task.compute_dag)
出:
Extract tasks…
========== Task 0 (workload key: [“b32ed43fb351136894c322ee49097a1a”]) ==========
placeholder = PLACEHOLDER [1, 1000]
T_softmax_maxelem(i0) max= placeholder[i0, k]
T_softmax_exp(i0, i1) = tir.exp((placeholder[i0, i1] - T_softmax_maxelem[i0]))
T_softmax_expsum(i0) += T_softmax_exp[i0, k]
T_softmax_norm(i0, i1) = (T_softmax_exp[i0, i1]/T_softmax_expsum[i0])
========== Task 1 (workload key: [“6129df1a3d5f6326c8393a8d17160199”]) ==========
placeholder = PLACEHOLDER [1, 2048]
placeholder = PLACEHOLDER [1000, 2048]
compute(z, y, x) += (placeholder[z, ((k*16) + x)]placeholder[y, ((k16) + x)])
compute(y, x) += compute[y, x, kk]
placeholder = PLACEHOLDER [1000]
T_add(ax0, ax1) = (compute[ax0, ax1] + placeholder[ax1])
========== Task 2 (workload key: [“36ee2798ed60bae3bcd1bb89a0285fe8”]) ==========
placeholder = PLACEHOLDER [1, 7, 7, 2048]
tensor(ax0, ax1, ax2, ax3) += placeholder[ax0, ((ax17) + rv0), ((ax27) + rv1), ax3]
tensor(ax0, ax1, ax2, ax3) = (tensor[ax0, ax1, ax2, ax3]/(float32((select((bool)1, ((ax1 + 1)*7), (((ax1 + 1)7) + 1)) - (ax17)))*float32((select((bool)1, ((ax2 + 1)*7), (((ax2 + 1)7) + 1)) - (ax27)))))
========== Task 3 (workload key: [“dcf6fcf5f56fa614bf9aef0c82382caf”]) ==========
placeholder = PLACEHOLDER [1, 7, 7, 512]
PaddedInput(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]
placeholder = PLACEHOLDER [1, 1, 512, 2048]
Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])
placeholder = PLACEHOLDER [1, 7, 7, 2048]
T_add(ax0, ax1, ax2, ax3) = (Conv2dOutput[ax0, ax1, ax2, ax3] + placeholder[ax0, ax1, ax2, ax3])
placeholder = PLACEHOLDER [1, 1, 1, 2048]
T_multiply(ax0, ax1, ax2, ax3) = (T_add[ax0, ax1, ax2, ax3]*placeholder[ax0, 0, 0, ax3])
placeholder = PLACEHOLDER [1, 1, 1, 2048]
T_add(ax0, ax1, ax2, ax3) = (T_multiply[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)
========== Task 4 (workload key: [“7e3f0cf5a6dd80d36dab1a3dad92674a”]) ==========
placeholder = PLACEHOLDER [1, 7, 7, 512]
PaddedInput(i0, i1, i2, i3) = tir.if_then_else(((((i1 >= 1) && (i1 < 8)) && (i2 >= 1)) && (i2 < 8)), placeholder[i0, (i1 - 1), (i2 - 1), i3], 0f)
placeholder = PLACEHOLDER [3, 3, 512, 512]
Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])
placeholder = PLACEHOLDER [1, 1, 1, 512]
T_add(ax0, ax1, ax2, ax3) = (Conv2dOutput[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)
========== Task 5 (workload key: [“e0a9eb3795b531085e0ebb772e7e800c”]) ==========
placeholder = PLACEHOLDER [1, 7, 7, 2048]
PaddedInput(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]
placeholder = PLACEHOLDER [1, 1, 2048, 512]
Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])
placeholder = PLACEHOLDER [1, 1, 1, 512]
T_add(ax0, ax1, ax2, ax3) = (Conv2dOutput[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)
========== Task 6 (workload key: [“03614e726dc588d11887eb0953a77e53”]) ==========
placeholder = PLACEHOLDER [1, 7, 7, 512]
PaddedInput(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]
placeholder = PLACEHOLDER [1, 1, 512, 2048]
Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])
placeholder = PLACEHOLDER [1, 7, 7, 2048]
T_add(ax0, ax1, ax2, ax3) = (Conv2dOutput[ax0, ax1, ax2, ax3] + placeholder[ax0, ax1, ax2, ax3])
========== Task 7 (workload key: [“7657f886f5e9d8b5f19a5fd2c5b90d8d”]) ==========
placeholder = PLACEHOLDER [1, 14, 14, 1024]
PaddedInput(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]
placeholder = PLACEHOLDER [1, 1, 1024, 512]
Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, ((yy2) + ry), ((xx2) + rx), rc]*placeholder[ry, rx, rc, ff])
placeholder = PLACEHOLDER [1, 1, 1, 512]
T_add(ax0, ax1, ax2, ax3) = (Conv2dOutput[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)
========== Task 8 (workload key: [“7e09b626cf077cd419190fee02091dd6”]) ==========
placeholder = PLACEHOLDER [1, 14, 14, 256]
PaddedInput(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]
placeholder = PLACEHOLDER [1, 1, 256, 1024]
Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])
placeholder = PLACEHOLDER [1, 14, 14, 1024]
T_add(ax0, ax1, ax2, ax3) = (Conv2dOutput[ax0, ax1, ax2, ax3] + placeholder[ax0, ax1, ax2, ax3])
placeholder = PLACEHOLDER [1, 1, 1, 1024]
T_add(ax0, ax1, ax2, ax3) = (T_add[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)
========== Task 9 (workload key: [“95bf49cc8cf7a351e974b2359702aac0”]) ==========
placeholder = PLACEHOLDER [1, 14, 14, 256]
PaddedInput(i0, i1, i2, i3) = tir.if_then_else(((((i1 >= 1) && (i1 < 15)) && (i2 >= 1)) && (i2 < 15)), placeholder[i0, (i1 - 1), (i2 - 1), i3], 0f)
placeholder = PLACEHOLDER [3, 3, 256, 256]
Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])
placeholder = PLACEHOLDER [1, 1, 1, 256]
T_add(ax0, ax1, ax2, ax3) = (Conv2dOutput[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)
========== Task 10 (workload key: [“e043f834cc7f19597227e09dc7f59503”]) ==========
placeholder = PLACEHOLDER [1, 14, 14, 1024]
PaddedInput(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]
placeholder = PLACEHOLDER [1, 1, 1024, 256]
Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])
placeholder = PLACEHOLDER [1, 1, 1, 256]
T_add(ax0, ax1, ax2, ax3) = (Conv2dOutput[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)
========== Task 11 (workload key: [“cd7c4a374fb2bbc0d075c8cae638ad14”]) ==========
placeholder = PLACEHOLDER [1, 14, 14, 256]
PaddedInput(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]
placeholder = PLACEHOLDER [1, 1, 256, 1024]
Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])
placeholder = PLACEHOLDER [1, 14, 14, 1024]
T_add(ax0, ax1, ax2, ax3) = (Conv2dOutput[ax0, ax1, ax2, ax3] + placeholder[ax0, ax1, ax2, ax3])
========== Task 12 (workload key: [“1dce2c5e4269b8a12dfc50cd4dd23ff1”]) ==========
placeholder = PLACEHOLDER [1, 28, 28, 512]
PaddedInput(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]
placeholder = PLACEHOLDER [1, 1, 512, 256]
Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, ((yy2) + ry), ((xx2) + rx), rc]*placeholder[ry, rx, rc, ff])
placeholder = PLACEHOLDER [1, 1, 1, 256]
T_add(ax0, ax1, ax2, ax3) = (Conv2dOutput[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)
========== Task 13 (workload key: [“d3b36ce001dc24d693facfbdae1979b4”]) ==========
placeholder = PLACEHOLDER [1, 28, 28, 128]
PaddedInput(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]
placeholder = PLACEHOLDER [1, 1, 128, 512]
Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])
placeholder = PLACEHOLDER [1, 28, 28, 512]
T_add(ax0, ax1, ax2, ax3) = (Conv2dOutput[ax0, ax1, ax2, ax3] + placeholder[ax0, ax1, ax2, ax3])
placeholder = PLACEHOLDER [1, 1, 1, 512]
T_add(ax0, ax1, ax2, ax3) = (T_add[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)
========== Task 14 (workload key: [“0fb1dfcdb5b755e2dab290ed0129dcf2”]) ==========
placeholder = PLACEHOLDER [1, 28, 28, 128]
PaddedInput(i0, i1, i2, i3) = tir.if_then_else(((((i1 >= 1) && (i1 < 29)) && (i2 >= 1)) && (i2 < 29)), placeholder[i0, (i1 - 1), (i2 - 1), i3], 0f)
placeholder = PLACEHOLDER [3, 3, 128, 128]
Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])
placeholder = PLACEHOLDER [1, 1, 1, 128]
T_add(ax0, ax1, ax2, ax3) = (Conv2dOutput[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)
========== Task 15 (workload key: [“45acfc473c772458684f36a34549d8aa”]) ==========
placeholder = PLACEHOLDER [1, 28, 28, 512]
PaddedInput(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]
placeholder = PLACEHOLDER [1, 1, 512, 128]
Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])
placeholder = PLACEHOLDER [1, 1, 1, 128]
T_add(ax0, ax1, ax2, ax3) = (Conv2dOutput[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)
========== Task 16 (workload key: [“5e3ceb6e23ae8c351d5a1770d5fc6c7c”]) ==========
placeholder = PLACEHOLDER [1, 28, 28, 128]
PaddedInput(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]
placeholder = PLACEHOLDER [1, 1, 128, 512]
Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])
placeholder = PLACEHOLDER [1, 28, 28, 512]
T_add(ax0, ax1, ax2, ax3) = (Conv2dOutput[ax0, ax1, ax2, ax3] + placeholder[ax0, ax1, ax2, ax3])
========== Task 17 (workload key: [“a085717fb3dcb046e5c4c2c04d3dc541”]) ==========
placeholder = PLACEHOLDER [1, 56, 56, 256]
PaddedInput(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]
placeholder = PLACEHOLDER [1, 1, 256, 128]
Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, ((yy2) + ry), ((xx2) + rx), rc]*placeholder[ry, rx, rc, ff])
placeholder = PLACEHOLDER [1, 1, 1, 128]
T_add(ax0, ax1, ax2, ax3) = (Conv2dOutput[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)
========== Task 18 (workload key: [“691feef049c8693bbe91bd5e7c9cdf34”]) ==========
placeholder = PLACEHOLDER [1, 56, 56, 64]
PaddedInput(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]
placeholder = PLACEHOLDER [1, 1, 64, 256]
Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])
placeholder = PLACEHOLDER [1, 56, 56, 256]
T_add(ax0, ax1, ax2, ax3) = (Conv2dOutput[ax0, ax1, ax2, ax3] + placeholder[ax0, ax1, ax2, ax3])
placeholder = PLACEHOLDER [1, 1, 1, 256]
T_add(ax0, ax1, ax2, ax3) = (T_add[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)
========== Task 19 (workload key: [“a9e632e5167afb60fbe29e7aeef1d152”]) ==========
placeholder = PLACEHOLDER [1, 56, 56, 64]
PaddedInput(i0, i1, i2, i3) = tir.if_then_else(((((i1 >= 1) && (i1 < 57)) && (i2 >= 1)) && (i2 < 57)), placeholder[i0, (i1 - 1), (i2 - 1), i3], 0f)
placeholder = PLACEHOLDER [3, 3, 64, 64]
Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])
placeholder = PLACEHOLDER [1, 1, 1, 64]
T_add(ax0, ax1, ax2, ax3) = (Conv2dOutput[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)
========== Task 20 (workload key: [“b51e06c1131d4cded40d1b215f722a4e”]) ==========
placeholder = PLACEHOLDER [1, 56, 56, 256]
PaddedInput(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]
placeholder = PLACEHOLDER [1, 1, 256, 64]
Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])
placeholder = PLACEHOLDER [1, 1, 1, 64]
T_add(ax0, ax1, ax2, ax3) = (Conv2dOutput[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)
========== Task 21 (workload key: [“8fcee68a4342c38248a827f1c6c69177”]) ==========
placeholder = PLACEHOLDER [1, 56, 56, 64]
PaddedInput(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]
placeholder = PLACEHOLDER [1, 1, 64, 256]
Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])
placeholder = PLACEHOLDER [1, 56, 56, 256]
T_add(ax0, ax1, ax2, ax3) = (Conv2dOutput[ax0, ax1, ax2, ax3] + placeholder[ax0, ax1, ax2, ax3])
========== Task 22 (workload key: [“8dd7d81db440763f622f03fdc99e6d46”]) ==========
placeholder = PLACEHOLDER [1, 56, 56, 64]
PaddedInput(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]
placeholder = PLACEHOLDER [1, 1, 64, 64]
Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])
placeholder = PLACEHOLDER [1, 1, 1, 64]
T_add(ax0, ax1, ax2, ax3) = (Conv2dOutput[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)
========== Task 23 (workload key: [“ba2026d923536b75e9b4faed89287d5f”]) ==========
placeholder = PLACEHOLDER [1, 112, 112, 64]
pad_temp(ax0, ax1, ax2, ax3) = tir.if_then_else(((((ax1 >= 1) && (ax1 < 113)) && (ax2 >= 1)) && (ax2 < 113)), placeholder[ax0, (ax1 - 1), (ax2 - 1), ax3], -3.40282e+38f)
tensor(ax0, ax1, ax2, ax3) max= pad_temp[ax0, ((ax12) + dh), ((ax22) + dw), ax3]
placeholder = PLACEHOLDER [1, 1, 1, 64]
T_add(ax0, ax1, ax2, ax3) = (tensor[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)
========== Task 24 (workload key: [“a0eb8d6048282a4a0986cc2ccf14eaa2”]) ==========
placeholder = PLACEHOLDER [1, 224, 224, 3]
PaddedInput(i0, i1, i2, i3) = tir.if_then_else(((((i1 >= 3) && (i1 < 227)) && (i2 >= 3)) && (i2 < 227)), placeholder[i0, (i1 - 3), (i2 - 3), i3], 0f)
placeholder = PLACEHOLDER [7, 7, 3, 64]
Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, ((yy2) + ry), ((xx2) + rx), rc]*placeholder[ry, rx, rc, ff])
placeholder = PLACEHOLDER [1, 1, 1, 64]
T_add(ax0, ax1, ax2, ax3) = (Conv2dOutput[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)
========== Task 25 (workload key: [“45b4de07687dee43ee1cbde9f516b2bf”]) ==========
placeholder = PLACEHOLDER [1, 56, 56, 64]
PaddedInput(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]
placeholder = PLACEHOLDER [1, 1, 64, 256]
Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])
========== Task 26 (workload key: [“b2010aa63c95dedf1f58f3fe8bc78634”]) ==========
placeholder = PLACEHOLDER [1, 56, 56, 256]
PaddedInput(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]
placeholder = PLACEHOLDER [1, 1, 256, 512]
Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, ((yy2) + ry), ((xx2) + rx), rc]*placeholder[ry, rx, rc, ff])
========== Task 27 (workload key: [“4d7e646d99bfa3cea8245bd7100369cb”]) ==========
placeholder = PLACEHOLDER [1, 28, 28, 512]
PaddedInput(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]
placeholder = PLACEHOLDER [1, 1, 512, 1024]
Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, ((yy2) + ry), ((xx2) + rx), rc]*placeholder[ry, rx, rc, ff])
========== Task 28 (workload key: [“537c8642716948c33a6eaaabc86b159d”]) ==========
placeholder = PLACEHOLDER [1, 14, 14, 1024]
PaddedInput(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]
placeholder = PLACEHOLDER [1, 1, 1024, 2048]
Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, ((yy2) + ry), ((xx2) + rx), rc]*placeholder[ry, rx, rc, ff])
開始Tuning調試
現在,設置一些選項來優化和啟動搜索任務
? num_measure_trials是在調試期間可以使用的測量試驗次數。可以將其設置為較小的數字(例如200)以進行快速演示。實際上,建議將其設置為800 * len(tasks),通常足以使搜索收斂。例如,resnet-50中有29個任務,可以將其設置為20000。可以根據時間預算調試此參數。
? 此外,還用RecordToFile將測量記錄轉儲到日志文件中,這些測量記錄可用于最好地查詢歷史記錄,恢復搜索以及以后進行更多分析。
? 有關更多參數, 請參見auto_scheduler.TuningOptions, auto_scheduler.LocalRunner。
def run_tuning():
print(“Begin tuning…”)
tuner = auto_scheduler.TaskScheduler(tasks, task_weights)
tune_option = auto_scheduler.TuningOptions(
num_measure_trials=200, # change this to 20000 to achieve the best performance
runner=auto_scheduler.LocalRunner(repeat=10, enable_cpu_cache_flush=True),
measure_callbacks=[auto_scheduler.RecordToFile(log_file)],
)
tuner.tune(tune_option)
# We do not run the tuning in our webpage server since it takes too long.
# Uncomment the following line to run it by yourself.
# run_tuning()
注意
tuning調試期間說明打印的信息
在tuning調試期間,控制臺上會打印很多信息。它們用于調試目的。最重要的信息是任務調度程序的輸出。下表是示例輸出。
------------------------------ [ Task Scheduler ]
| ID | Latency (ms) | Speed (GFLOPS) | Trials |
| 0 | 0.010 | 0.40 | 64 |
| 1 | 0.087 | 47.19 | 64 |
| 2 | 0.008 | -0.00 | 64 |
| 3 | 0.177 | 582.07 | 64 |
| 4 | 0.268 | 862.37 | 256 |
| 5 | 0.166 | 621.13 | 128 |
| 6 | 0.170 | 605.10 | 128 |
| 7 | 0.128 | 403.20 | 64 |
| 8 | 0.189 | 545.71 | 64 |
| 9 | 0.231 | 1001.01 | 448 |
| 10 | 0.155 | 664.80 | 256 |
| 11 | 0.155 | 662.86 | 256 |
| 12 | 0.119 | 434.08 | 64 |
| 13 | 0.199 | 522.13 | 64 |
| 14 | 0.235 | 986.56 | 320 |
| 15 | 0.149 | 689.13 | 128 |
| 16 | 0.155 | 664.80 | 192 |
| 17 | 0.151 | 340.64 | 64 |
| 18 | 0.176 | 597.55 | 128 |
| 19 | 0.220 | 1054.37 | 192 |
| 20 | 0.150 | 686.01 | 128 |
| 21 | 0.159 | 650.88 | 128 |
| 22 | 0.073 | 358.19 | 64 |
| 23 | 0.031 | 70.63 | 64 |
| 24 | 0.251 | 947.73 | 128 |
| 25 | 0.157 | 652.47 | 128 |
| 26 | 0.215 | 954.84 | 128 |
| 27 | 0.237 | 868.92 | 128 |
| 28 | 0.266 | 774.06 | 128 |
Estimated total latency: 10.016 ms Trials: 3992 Used time : 1131 s Next ID: 15
下表列出了所有任務的延遲和(估計)速度。它還列出了所有任務的測量試驗分配。最后一行顯示這些任務的總加權延遲,這可以粗略估計網絡的端到端執行時間。最后一行還顯示測量試驗的總數,自動調試所花費的總時間以及要調試的下一個任務的ID。
也將出現一些“ dmlc :: Error”錯誤,因為自動調度程序將嘗試某些無效的調度。如果可以繼續進行調試,則可以放心地忽略它們,因為這些錯誤與主要過程是隔離的。
注意
提前終止調試
可以通過強制終止此過程來提前終止調試。只要為日志文件中的每個任務獲得至少一個有效的調度,就應該能夠進行編譯(下面的部分)。
編譯和評估
自動調試后,可以使用發現的最佳時間表來編譯網絡。在自動調試過程中,所有測量記錄都將轉儲到日志文件中,因此可以讀取日志文件并加載最佳調度。
Compile with the history best
print(“Compile…”)
with auto_scheduler.ApplyHistoryBest(log_file):
with tvm.transform.PassContext(opt_level=3, config={“relay.backend.use_auto_scheduler”: True}):
lib = relay.build(mod, target=target, params=params)
Create graph runtime
ctx = tvm.context(str(target), 0)
module = graph_runtime.GraphModule(lib"default")
data_tvm = tvm.nd.array((np.random.uniform(size=input_shape)).astype(dtype))
module.set_input(“data”, data_tvm)
Evaluate
print(“Evaluate inference time cost…”)
ftimer = module.module.time_evaluator(“run”, ctx, repeat=3, min_repeat_ms=500)
prof_res = np.array(ftimer().results) * 1e3 # convert to millisecond
print(“Mean inference time (std dev): %.2f ms (%.2f ms)” % (np.mean(prof_res), np.std(prof_res)))
出:
Compile…
Evaluate inference time cost…
Mean inference time (std dev): 30.72 ms (0.09 ms)
其他技巧
? 在調試期間,自動調度器需要編譯許多程序并從中提取功能。此部分占用大量CPU,因此建議使用具有多個內核的高性能CPU以加快搜索速度。
? 可以 用python3 -m tvm.auto_scheduler.measure_record --mode distill --i log.json來提取大型日志文件,而僅保存最有用的記錄。
? 可以從上一個日志文件繼續搜索。load_log_file在function中創建任務調度程序時,只需添加一個新參數run_tuning。也就是, tuner = auto_scheduler.TaskScheduler(tasks, task_weights, load_log_file=log_file)
? 如果有多個目標CPU,則可以將它們全部用于測量以并行化測量。檢查本節 以了解如何使用RPC跟蹤器和RPC服務器。要在自動調度使用RPC跟蹤,在TuningOptions中用auto_scheduler.RPCRunner更換runner 。
總結
以上是生活随笔為你收集整理的为x86 CPU自动调度神经网络的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: TVM Reduction降低算力
- 下一篇: 自动调度GPU的卷积层