CIFAR和SVHN在各CNN论文中的结果
生活随笔
收集整理的這篇文章主要介紹了
CIFAR和SVHN在各CNN论文中的结果
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
CIFAR和SVHN結果
| ResNet-110 | 1.7M | 6.61 | |||
| ResNet-110 | 1.7M | 6.41 | 27.22 | 2.01 | stochastic depth復現的 |
| ResNet-164 | 1.7M | 25.16 | resNetv2提中提到的 | ||
| ResNetv2-164 | 1.7M | 5.46 | 24.33 | ||
| ResNetv2-1001 | 10.2M | 4.69 | 22.68 | ||
| FractalNet-20 with drop | 38.6M | 4.60 | 1.87 | ||
| FractalNet-40 | 22.9M | 22.49 | |||
| WRN-40-4 | 8.9M | 4.53 | 21.18 | ||
| WRN-16-8 | 11.0M | 4.27 | 20.43 | ||
| WRN-28-10 | 36.5M | 4.00 | 19.25 | ||
| WRN-28-10 dropout | 36.5M | 3.89 | 18.85 | ||
| WRN-16-4 dropout | 1.64 | ||||
| ResNeXt-29,8x64d | 34.4M | 3.65 | 17.77 | ||
| ResNeXt-29,16x64d | 68.1M | 3.58 | 17.31 | ||
| DenseNet-40(k=12) | 1.0M | 5.24 | 24.42 | 1.79 | |
| DenseNet-100(k=12) | 7.0M | 4.10 | 20.20 | 1.67 | |
| DenseNet-100(k=24) | 27.2M | 3.74 | 19.25 | 1.59 | |
| DenseNet-BC-100(k=12) | 0.8M | 4.51 | 22.27 | 1.76 | |
| DenseNet-BC-250(k=24) | 15.3M | 3.62 | 17.60 | 1.74 | |
| DenseNet-BC-190(k=40) | 25.6M | 3.46 | 17.18 |
CIFAR數據集地址
http://www.cs.toronto.edu/~kriz/cifar.html
轉載于:https://www.cnblogs.com/liaohuiqiang/p/9692888.html
創作挑戰賽新人創作獎勵來咯,堅持創作打卡瓜分現金大獎總結
以上是生活随笔為你收集整理的CIFAR和SVHN在各CNN论文中的结果的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: Git----分支管理之分支管理策略04
- 下一篇: 手机卡变成2g上不了网?