图像处理作业第五次
第5次圖像處理作業
1. 復習理解課本中最佳陷波濾波器進行圖像恢復的過程,請推導出w(x,y)最優解的計算過程.
根據公式:
σ2=1(2a+1)(2b+1)∑∑[g?wη?(gˉ?wηˉ)]2\sigma ^2= \frac{1}{(2a+1)(2b+1)}\sum\sum[g-w\eta - (\bar g-w\bar\eta)]^2σ2=(2a+1)(2b+1)1?∑∑[g?wη?(gˉ??wηˉ?)]2
?σ2?w=2(2a+1)(2b+1)∑∑[g?wη?(gˉ?wηˉ)][?η+ηˉ]=0\frac{\partial \sigma^2}{\partial w}=\frac{2}{(2a+1)(2b+1)}\sum\sum[g-w\eta - (\bar g-w\bar\eta)][-\eta+\bar\eta] = 0?w?σ2?=(2a+1)(2b+1)2?∑∑[g?wη?(gˉ??wηˉ?)][?η+ηˉ?]=0
∑∑(g?gˉ)(?η+ηˉ)+∑∑w(?η+ηˉ)(?η+ηˉ)=0\sum\sum(g-\bar g)(-\eta+\bar \eta) + \sum\sum w(-\eta+\bar \eta)(-\eta+\bar \eta) =0∑∑(g?gˉ?)(?η+ηˉ?)+∑∑w(?η+ηˉ?)(?η+ηˉ?)=0
w=∑∑(g?gˉ)(?η+ηˉ)∑∑(?η+ηˉ)(?η+ηˉ)w=\frac{\sum\sum(g-\bar g)(-\eta+\bar \eta)}{\sum\sum (-\eta+\bar \eta)(-\eta+\bar \eta)}w=∑∑(?η+ηˉ?)(?η+ηˉ?)∑∑(g?gˉ?)(?η+ηˉ?)?
w=1(2a+1)(2b+1)∑∑(g?gˉ)(?η+ηˉ)1(2a+1)(2b+1)∑∑(?η+ηˉ)(?η+ηˉ)w=\frac{\frac{1}{(2a+1)(2b+1)}\sum\sum(g-\bar g)(-\eta+\bar \eta)}{ \frac{1}{(2a+1)(2b+1)}\sum\sum (-\eta+\bar \eta)(-\eta+\bar \eta)}w=(2a+1)(2b+1)1?∑∑(?η+ηˉ?)(?η+ηˉ?)(2a+1)(2b+1)1?∑∑(g?gˉ?)(?η+ηˉ?)?
w=1(2a+1)(2b+1)(∑∑(gηˉ?gˉηˉ)+∑∑(?gη+gˉη))1(2a+1)(2b+1)(∑∑η2+∑∑ηˉ2?2∑∑ηηˉ)w = \frac{\frac{1}{(2a+1)(2b+1)}(\sum\sum(g\bar\eta-\bar g\bar\eta)+\sum\sum(-g\eta+\bar g \eta))}{ \frac{1}{(2a+1)(2b+1)}(\sum\sum \eta^2 +\sum\sum\bar\eta^2-2\sum\sum\eta\bar\eta)}w=(2a+1)(2b+1)1?(∑∑η2+∑∑ηˉ?2?2∑∑ηηˉ?)(2a+1)(2b+1)1?(∑∑(gηˉ??gˉ?ηˉ?)+∑∑(?gη+gˉ?η))?
根據
1(2a+1)(2b+1)∑∑(gηˉ?gˉηˉ)=0\frac{1}{(2a+1)(2b+1)}\sum\sum(g\bar\eta-\bar g\bar\eta) = 0(2a+1)(2b+1)1?∑∑(gηˉ??gˉ?ηˉ?)=0
1(2a+1)(2b+1)(∑∑(gηˉ?gˉηˉ)+∑∑(?gη+gˉη))=gnˉ?gˉnˉ\frac{1}{(2a+1)(2b+1)}(\sum\sum(g\bar\eta-\bar g\bar\eta)+\sum\sum(-g\eta+\bar g \eta))={\bar{gn}-\bar g \bar n}(2a+1)(2b+1)1?(∑∑(gηˉ??gˉ?ηˉ?)+∑∑(?gη+gˉ?η))=gnˉ??gˉ?nˉ
1(2a+1)(2b+1)(∑∑ηˉ2?2∑∑ηηˉ)=ηˉ2{ \frac{1}{(2a+1)(2b+1)}(\sum\sum\bar\eta^2-2\sum\sum\eta\bar\eta)}=\bar \eta^2(2a+1)(2b+1)1?(∑∑ηˉ?2?2∑∑ηηˉ?)=ηˉ?2
那么
w=gnˉ?gˉnˉη2ˉ?ηˉ2w = \frac{\bar{gn}-\bar g \bar n}{\bar{\eta^2}-\bar \eta ^2}w=η2ˉ??ηˉ?2gnˉ??gˉ?nˉ?
2.考慮在x方向均勻加速導致的圖像模糊問題。如果圖像在t = 0靜止,并用均勻加速x0(t) = at2/2加速,對于時間T, 找出模糊函數H(u, v), 可以假設快門開關時間忽略不計。
新圖像函數為
g(x,y)=∫0Tf[x?x0(t),y?y0(t)]dtg(x,y)=\int _0 ^T f[x-x_0(t),y-y_0(t)]dtg(x,y)=∫0T?f[x?x0?(t),y?y0?(t)]dt
G(u,v)=∫∫g(x,y)e?j2π(ux+vy)dxdyG(u,v)=\int\int g(x,y)e^{-j2\pi(ux+vy)}dxdyG(u,v)=∫∫g(x,y)e?j2π(ux+vy)dxdy
=∫∫(∫0Tf[x?x0(t),y?y0(t)]dt)e?j2π(ux+vy)dxdy=\int\int(\int_0^Tf[x-x_0(t),y-y_0(t)]dt)e^{-j2\pi(ux+vy)}dxdy=∫∫(∫0T?f[x?x0?(t),y?y0?(t)]dt)e?j2π(ux+vy)dxdy
=∫0T(∫∫f[x?x0(t),y?y0(t)]e?j2π(ux+vy)dxdy)dt=\int_0^T(\int \int f[x-x_0(t),y-y_0(t)]e^{-j2\pi(ux+vy)}dxdy)dt=∫0T?(∫∫f[x?x0?(t),y?y0?(t)]e?j2π(ux+vy)dxdy)dt
=∫0TF(u,v)e?j2π(ux0(t)+vy0(t))dt=\int_0^TF(u,v)e^{-j2\pi(ux_0(t)+vy_0(t))}dt=∫0T?F(u,v)e?j2π(ux0?(t)+vy0?(t))dt
=F(u,v)∫0Te?j2π(ux0(t)+vy0(t))dt=F(u,v)\int_0^{T} e^{-j2\pi(ux_0(t)+vy_0(t))}dt=F(u,v)∫0T?e?j2π(ux0?(t)+vy0?(t))dt
因此模糊函數為
H(u,v)=∫0Te?j2π(ux0(t)+vy0(t))dt=∫0Te?jπuat2dtH(u,v)=\int_0^{T} e^{-j2\pi(ux_0(t)+vy_0(t))}dt=\int_0^T e^{-j\pi uat^2}dtH(u,v)=∫0T?e?j2π(ux0?(t)+vy0?(t))dt=∫0T?e?jπuat2dt
3.已知一個退化系統的退化函數H(u,v), 以及噪聲的均值與方差,請描述如何利用約束最小二乘方算法計算出原圖像的估計。
F^(u,v)=[H?(u,v)∣H(u,v)∣2+γ∣P(u,v)∣2]G(u,v)......?\widehat{F}(u,v)=[\frac{H^*(u,v)}{|H(u,v)|^2+\gamma |P(u,v)|^2}]G(u,v)......*F(u,v)=[∣H(u,v)∣2+γ∣P(u,v)∣2H?(u,v)?]G(u,v)......?
設定其殘差r=g?Hf^r = g-H\widehat{f}r=g?Hf?
應有∣∣r∣∣2=∣∣η∣∣2||r||^2=||\eta||^2∣∣r∣∣2=∣∣η∣∣2
(1)給定γ\gammaγ一個初始值
(2)計算∣∣r∣∣2||r||^2∣∣r∣∣2
(3)若滿足∣∣r∣∣2?∣∣η∣∣2||r||^2-||\eta||^2∣∣r∣∣2?∣∣η∣∣2處于某一個精度范圍之內則結束,否則更新γ\gammaγ大小,可以采用牛頓法.
(4)使用計算到的γ\gammaγ值代入(?)(*)(?)式中計算
(5)通逆傅里葉變換得到圖像.
在計算∣∣r∣∣2?∣∣η∣∣2||r||^2-||\eta||^2∣∣r∣∣2?∣∣η∣∣2的時候,其中∣∣η∣∣2||\eta||^2∣∣η∣∣2的計算需要依賴于噪聲的方差和均值.
∣∣η∣∣2=MN[σ2?m]||\eta||^2=MN[\sigma^2-m]∣∣η∣∣2=MN[σ2?m]
總結
- 上一篇: 一台10年前的安卓平板十年前的平板电脑
- 下一篇: 布置电脑桌的最佳方案电脑桌摆放设计