线性代数一之矩阵转向量随机化求解——神奇的矩阵(BZOJ)+向量内积
向量隨機(jī)化
- 神奇的矩陣
- description
- solution
- code
- [NOI2013]向量?jī)?nèi)積
- description
- solution
- code
矩陣既可以看成是一張數(shù)位表,也可以看成是若干個(gè)行向量或者若干個(gè)列向量的向量表
神奇的矩陣
description
solution
暴力做A?BA*BA?B會(huì)達(dá)到n3n^3n3的復(fù)雜度,難以接受
考慮,如果對(duì)于矩陣A,B,CA,B,CA,B,C滿足A?B=CA*B=CA?B=C,顯然有A?B?R=C?RA*B*R=C*RA?B?R=C?R
于是有隨機(jī)一個(gè)1×n1\times n1×n的向量RRR,然后check等式是否成立,A?R?BA*R*BA?R?B就會(huì)降成n2n^2n2的復(fù)雜度
隨機(jī)多次都無(wú)法滿足這個(gè)式子,A?B=CA*B=CA?B=C的概率就微乎其微(除非你是非酋)
code
#include <bits/stdc++.h> using namespace std; #define int long long int n;struct matrix {int n, m;int c[1000][1000];matrix() {memset( c, 0, sizeof( c ) );}matrix operator * ( matrix &t ) {matrix ans;ans.n = n, ans.m = t.m;for( int i = 0;i <= n;i ++ )for( int j = 0;j <= t.m;j ++ )for( int k = 0;k <= m;k ++ )ans.c[i][j] += c[i][k] * t.c[k][j];return ans;} }A, B, C, R, ans1, ans2;signed main() {srand( time( 0 ) );next :while( ~ scanf( "%lld", &n ) ) {n --;A.n = A.m = B.n = B.m = C.n = C.m = n;for( int i = 0;i <= n;i ++ )for( int j = 0;j <= n;j ++ )scanf( "%lld", &A.c[i][j] );for( int i = 0;i <= n;i ++ )for( int j = 0;j <= n;j ++ )scanf( "%lld", &B.c[i][j] );for( int i = 0;i <= n;i ++ )for( int j = 0;j <= n;j ++ )scanf( "%lld", &C.c[i][j] );int t = 30;again :while( t -- ) {R.n = 0, R.m = n;for( int i = 0;i <= n;i ++ )R.c[0][i] = rand();ans1 = R * A * B;ans2 = R * C;for( int i = 0;i <= n;i ++ )if( ans1.c[0][i] != ans2.c[0][i] )goto again;printf( "Yes\n" );goto next;}printf( "No\n" );}return 0; }[NOI2013]向量?jī)?nèi)積
description
solution
-
k=2
- 求出矩陣兩兩內(nèi)積(mod2)\pmod 2(mod2) ,即Y=A?ATY=A*A^TY=A?AT
- 接下來(lái)就是判斷Y=E,EY=E,EY=E,E為全111矩陣(Yi,jY_{i,j}Yi,j?代表著AAA的iii行向量與ATA^TAT的jjj列向量也就是原來(lái)的AjA_jAj?行向量的內(nèi)積)因?yàn)槿绻?span id="ze8trgl8bvbq" class="katex--inline">111代表著每?jī)蓚€(gè)向量的內(nèi)積都為1(mod2)1\pmod 21(mod2)
- 判斷方法就是上一題的隨機(jī)化
- 只要不等,就會(huì)有一個(gè)000向量,找到其位置pospospos,最后暴力求每個(gè)向量與其的內(nèi)積是否整除kkk即可
-
k=3,此時(shí)Ai,j=0/1/2A_{i,j}=0/1/2Ai,j?=0/1/2,不能在使用上述EEE來(lái)判斷了
-
轉(zhuǎn)換一下即可,Zi,j=Yi,j2(mod3)Z_{i,j}=Y_{i,j}^2\pmod 3Zi,j?=Yi,j2?(mod3),有12≡23≡1(mod3)1^2\equiv 2^3\equiv 1\pmod 312≡23≡1(mod3),只有02≡0(mod3)0^2\equiv 0\pmod302≡0(mod3)
-
再次使用EEE來(lái)進(jìn)行判斷
-
問(wèn)題在于,ZZZ是YYY每個(gè)單項(xiàng)的平方,不是整體的平方,不能使用矩陣快速得到
-
設(shè)α\alphaα是隨機(jī)的一個(gè)1×n1\times n1×n向量
-
(Z?α)i=∑j=1nZi,j?αj=∑j=1nYi,j2?αj=∑j=1nαj(∑k=1nAi,kAk,jT)2(Z*\alpha)_i=\sum_{j=1}^nZ_{i,j}*\alpha_j=\sum_{j=1}^nY_{i,j}^2*\alpha_j=\sum_{j=1}^n\alpha_j\bigg(\sum_{k=1}^nA_{i,k}A^T_{k,j}\bigg)^2(Z?α)i?=∑j=1n?Zi,j??αj?=∑j=1n?Yi,j2??αj?=∑j=1n?αj?(∑k=1n?Ai,k?Ak,jT?)2
=∑j=1nαj∑k1=1nAi,k1Ak1,jT?∑j=1nαj∑k2=1nAi,k2Ak2,jT=\sum_{j=1}^n\alpha_j\sum_{k_1=1}^nA_{i,k_1}A^T_{k_1,j}*\sum_{j=1}^n\alpha_j\sum_{k_2=1}^nA_{i,k_2}A^T_{k_2,j}=∑j=1n?αj?∑k1?=1n?Ai,k1??Ak1?,jT??∑j=1n?αj?∑k2?=1n?Ai,k2??Ak2?,jT?
-
發(fā)現(xiàn)可以變?yōu)?span id="ze8trgl8bvbq" class="katex--inline">∑k1,k2Ai,k1Ai,k2?∑j=1nαjAk1,jAk2,jT\sum_{k_1,k_2}A_{i,k_1}A_{i,k_2}*\sum_{j=1}^n\alpha_jA_{k_1,j}A^T_{k_2,j}∑k1?,k2??Ai,k1??Ai,k2???∑j=1n?αj?Ak1?,j?Ak2?,jT?
預(yù)處理出和iii無(wú)關(guān)部分,設(shè)gk1,k2=∑j=1nαjAk1,jAk2,jTg_{k_1,k_2}=\sum_{j=1}^n\alpha_jA_{k_1,j}A^T_{k_2,j}gk1?,k2??=∑j=1n?αj?Ak1?,j?Ak2?,jT?
-
-
code
#include <bits/stdc++.h> using namespace std; #define int long long #define maxn 100005 #define maxd 105 int n, d, k, sum, pos, flag; int x[maxn][maxd], g[maxn][maxd]; int ret[maxd], r[maxn];void calc2() {for( int i = 1;i <= d;i ++ ) ret[i] = 0;for( int i = 1;i <= d;i ++ )for( int j = 1;j <= n;j ++ )ret[i] = ( ret[i] + r[j] * x[j][i] ) % k;for( int i = 1;i <= n;i ++ ) {int ans = 0;for( int j = 1;j <= d;j ++ )ans = ( ans + ret[j] * x[i][j] ) % k;if( ans != sum ) {pos = i, flag = 1;break;}} }void calc3() {for( int k1 = 1;k1 <= d;k1 ++ )for( int k2 = 1;k2 <= d;k2 ++ ) {g[k1][k2] = 0;for( int j = 1;j <= n;j ++ )g[k1][k2] = ( g[k1][k2] + r[j] * x[j][k1] % k * x[j][k2] ) % k;}for( int i = 1;i <= n;i ++ ) {int ans = 0;for( int k1 = 1;k1 <= d;k1 ++ )for( int k2 = 1;k2 <= d;k2 ++ )ans = ( ans + x[i][k1] * x[i][k2] % k * g[k1][k2] ) % k;if( ans != sum ) {pos = i, flag = 1;break;}} }signed main() {srand( time( 0 ) );scanf( "%lld %lld %lld", &n, &d, &k );for( int i = 1;i <= n;i ++ )for( int j = 1;j <= d;j ++ )scanf( "%lld", &x[i][j] ); for( int T = 1;T <= 6;T ++ ) {sum = 0;for( int i = 1;i <= n;i ++ )r[i] = rand() % k, sum = ( sum + r[i] ) % k;if( k == 2 ) calc2();else calc3();if( flag ) break;}if( ! flag ) return ! printf( "-1 -1\n" );else {for( int i = 1;i <= n;i ++ )if( i ^ pos ) {int ans = 0;for( int j = 1;j <= d;j ++ )ans = ( ans + x[i][j] * x[pos][j] ) % k;if( ! ans ) return ! printf( "%lld %lld\n", min( i, pos ), max( i, pos ) );}}return 0; }總結(jié)
以上是生活随笔為你收集整理的线性代数一之矩阵转向量随机化求解——神奇的矩阵(BZOJ)+向量内积的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: 全员核酸检测预登记什么意思 全员核酸检测
- 下一篇: 线性代数二之矩阵加速DP——数学作业,A