Mynavi Programming Contest 2021(AtCoder Beginner Contest 201)题解
文章目錄
- A - Tiny Arithmetic Sequence
- B - Do you know the second highest mountain?
- C - Secret Number
- D - Game in Momotetsu World
- E - Xor Distances
- F - Insertion Sort
Mynavi Programming Contest 2021(AtCoder Beginner Contest 201)
A - Tiny Arithmetic Sequence
if?elseif-elseif?else直接判
B - Do you know the second highest mountain?
sortsortsort排序
C - Secret Number
本來以為要計數DPDPDP/生成函數,但是仔細一看密碼位數固定只有444位,直接暴力枚舉判斷
D - Game in Momotetsu World
考試時一直正著跑兩人交替,總是錯;考慮過倒著跑回去,但是沒有實現出來(自己想要的效果)
每個人都是聰明的,都想盡可能拉開與對方的正差距,縮小與對方的負差距
ci,j?dpi,jc_{i,j}-dp_{i,j}ci,j??dpi,j?寫得真的很妙
#include <cstdio> #include <iostream> using namespace std; #define maxn 2005 int dp[maxn][maxn], c[maxn][maxn]; char s[maxn]; int n, m;int main() {scanf( "%d %d", &n, &m );for( int i = 1;i <= n;i ++ ) {scanf( "%s", s + 1 );for( int j = 1;j <= m;j ++ )c[i][j] = ( s[j] == '+' ? 1 : -1 );}for( int i = n;i;i -- )for( int j = m;j;j -- ) {if( i == n && j == m ) continue;else if( i == n ) dp[i][j] = c[i][j + 1] - dp[i][j + 1];else if( j == m ) dp[i][j] = c[i + 1][j] - dp[i + 1][j];else dp[i][j] = max( c[i + 1][j] - dp[i + 1][j], c[i][j + 1] - dp[i][j + 1] );}if( dp[1][1] > 0 ) printf( "Takahashi\n" );else if( dp[1][1] < 0 ) printf( "Aoki\n" );else printf( "Draw\n" );return 0; }E - Xor Distances
EEE竟然比DDD簡單凸(艸皿艸 )eggs
di,j=dj,i?di,j=dk,i?dk,j=dk,i?dk,j?dx,k?dx,k=dx,i?dx,jd_{i,j}=d_{j,i}\Rightarrow d_{i,j}=d_{k,i}\bigoplus d_{k,j}=d_{k,i}\bigoplus d_{k,j}\bigoplus d_{x,k}\bigoplus d_{x,k}=d_{x,i}\bigoplus d_{x,j}di,j?=dj,i??di,j?=dk,i??dk,j?=dk,i??dk,j??dx,k??dx,k?=dx,i??dx,j?
兩個點之間的最短距離異或等于任選一個點做超級點,超級點到兩個點的最短距離異或和(不妨就設為111)
異或是二進制操作,各位獨立,考慮拆解每一位iii
如果iii位有貢獻2i2^i2i,那么一定是兩個點到111的距離第iii位異或為10=11^0=110=1
所以拆開每位分別統計有多少個點的距離該位為111,乘法原理,任何一個都可以和該位不是111的任何一個組起來
#include <cstdio> #include <vector> using namespace std; #define maxn 200005 #define int long long #define mod 1000000007 vector < pair < int, int > > G[maxn]; int n; int dep[maxn];void dfs( int u, int fa ) {for( int i = 0;i < G[u].size();i ++ ) {int v = G[u][i].first, w = G[u][i].second;if( v == fa ) continue;else dep[v] = dep[u] ^ w, dfs( v, u );} }signed main() {scanf( "%lld", &n );for( int i = 1, u, v, w;i < n;i ++ ) {scanf( "%lld %lld %lld", &u, &v, &w );G[u].push_back( make_pair( v, w ) );G[v].push_back( make_pair( u, w ) );}dfs( 1, 0 );int ans = 0;for( int j = 0;j < 60;j ++ ) {int cnt = 0;for( int i = 1;i <= n;i ++ )if( 1ll << j & dep[i] ) cnt ++;else;ans = ( ans + ( 1ll << j ) % mod * cnt % mod * ( n - cnt ) % mod ) % mod;}printf( "%lld\n", ans );return 0; }F - Insertion Sort
顯然,對于每個數最多只會操作一次,假設不動數的集合為SSS,且S1<S2<...<SxS_1<S_2<...<S_xS1?<S2?<...<Sx?
那么其必定滿足posS1<posS2<...<posSxpos_{S_1}<pos_{S_2}<...<pos_{S_x}posS1??<posS2??<...<posSx??且對于某個點i,i?Si,i?Si,i∈/?S
- i:Aii:A_ii:Ai?
- posi<S1:Bipos_i<S_1:B_iposi?<S1?:Bi?
- Sx<posi:CiS_x<pos_i:C_iSx?<posi?:Ci?
設dpi:Sdp_i:Sdpi?:S中最大下標為iii時的最小操作數
dpi=min(∑j=1i?1min(Aj,Bj),min?j<i,posj<posi(dpj+∑k=j+1i?1Ak)dp_i=min(\sum_{j=1}^{i-1}min(A_j,B_j),\min_{j<i,pos_j<pos_i}(dp_j+\sum_{k=j+1}^{i-1}A_k)dpi?=min(∑j=1i?1?min(Aj?,Bj?),minj<i,posj?<posi??(dpj?+∑k=j+1i?1?Ak?)
對posipos_iposi?建線段樹,logloglog查詢
最后的答案即為min(dpi+∑j=i+1nmin(Aj,Cj))min(dp_i+\sum_{j=i+1}^nmin(A_j,C_j))min(dpi?+∑j=i+1n?min(Aj?,Cj?))
#include <cstdio> #include <iostream> using namespace std; #define inf 1e15 #define maxn 200005 #define int long long int n; int P[maxn], A[maxn], B[maxn], C[maxn]; int Asum[maxn], Bsum[maxn], Csum[maxn], pos[maxn]; int dp[maxn], t[maxn << 2];void modfiy( int num, int l, int r, int p, int v ) {if( l == r ) {t[num] = v;return;}int mid = ( l + r ) >> 1;if( p <= mid ) modfiy( num << 1, l, mid, p, v );else modfiy( num << 1 | 1, mid + 1, r, p, v );t[num] = min( t[num << 1], t[num << 1 | 1] ); }int query( int num, int l, int r, int L, int R ) {if( L <= l && r <= R ) return t[num];int mid = ( l + r ) >> 1, ans = inf;if( L <= mid ) ans = min( ans, query( num << 1, l, mid, L, R ) );if( mid < R ) ans = min( ans, query( num << 1 | 1, mid + 1, r, L, R ) );return ans; }signed main() {scanf( "%lld", &n );for( int i = 1;i <= n;i ++ ) {scanf( "%lld", &P[i] );pos[P[i]] = i;}for( int i = 1;i <= n;i ++ )scanf( "%lld %lld %lld", &A[i], &B[i], &C[i] );for( int i = 1;i <= n;i ++ ) {Asum[i] = Asum[i - 1] + A[i];Bsum[i] = Bsum[i - 1] + min( A[i], B[i] );Csum[i] = Csum[i - 1] + min( A[i], C[i] );}int ans = inf;for( int i = 1;i <= n;i ++ ) {dp[i] = min( Bsum[i - 1], query( 1, 1, n, 1, pos[i] ) + Asum[i - 1] );ans = min( ans, dp[i] + Csum[n] - Csum[i] );modfiy( 1, 1, n, pos[i], dp[i] - Asum[i] );}printf( "%lld\n", ans );return 0; }總結
以上是生活随笔為你收集整理的Mynavi Programming Contest 2021(AtCoder Beginner Contest 201)题解的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: KYOCERA Programming
- 下一篇: 公司个人邮箱怎么注册(公司个人邮箱怎么注