P3327 [SDOI2015]约数个数和 (mobius反演)
P3327 [SDOI2015]約數(shù)個數(shù)和
推導過程
求∑i=1n∑j=1md(ij)\sum_{i = 1} ^{n} \sum_{j = 1} ^{m} d(ij)∑i=1n?∑j=1m?d(ij)
=∑i=1n∑j=1m∑x∣i∑y∣jgcd(x,y)==1= \sum_{i = 1} ^{n} \sum_{j = 1} ^{m} \sum_{x \mid i} \sum_{y \mid j} gcd(x, y) == 1=i=1∑n?j=1∑m?x∣i∑?y∣j∑?gcd(x,y)==1
改成枚舉x,yx, yx,y,
=∑i=1n∑j=1m∑i∣x∑j∣ygcd(i,j)==1= \sum_{i = 1} ^{n} \sum_{j = 1} ^{m} \sum _{i \mid x} \sum_{j \mid y} gcd(i, j) == 1=i=1∑n?j=1∑m?i∣x∑?j∣y∑?gcd(i,j)==1
=∑i=1n∑j=1m?ni??mj?(gcd(i,j)==1)= \sum_{i = 1} ^{n} \sum_{j = 1} ^{m} \lfloor\frac{n}{i}\rfloor \lfloor\frac{m}{j}\rfloor (gcd(i, j) == 1)=i=1∑n?j=1∑m??in???jm??(gcd(i,j)==1)
=∑i=1n∑j=1m?ni??mj?∑d∣(gcd(i,j))μ(d)= \sum_{i = 1} ^{n} \sum_{j = 1} ^{m} \lfloor\frac{n}{i}\rfloor \lfloor\frac{m}{j}\rfloor \sum_{d \mid (gcd(i, j))} \mu(d)=i=1∑n?j=1∑m??in???jm??d∣(gcd(i,j))∑?μ(d)
∑d=1nμ(d)∑i=1nd?ndi?∑j=1md?mdj?\sum_{d = 1} ^{n} \mu(d)\sum_{i = 1} ^{\frac{n}ze8trgl8bvbq} \lfloor\frac{n}{di}\rfloor \sum_{j = 1} ^{\frac{m}ze8trgl8bvbq} \lfloor \frac{m}{dj}\rfloord=1∑n?μ(d)i=1∑dn???din??j=1∑dm???djm??
最后我們只要預處理一下所有ndmd\frac{n}ze8trgl8bvbq \frac{m}ze8trgl8bvbqdn?dm?的整除分塊即可,整體復雜度nnn \sqrt nnn?
代碼
/*Author : lifehappy */ #pragma GCC optimize(2) #pragma GCC optimize(3) #include <bits/stdc++.h>#define mp make_pair #define pb push_back #define endl '\n' #define mid (l + r >> 1) #define lson rt << 1, l, mid #define rson rt << 1 | 1, mid + 1, r #define ls rt << 1 #define rs rt << 1 | 1using namespace std;typedef long long ll; typedef unsigned long long ull; typedef pair<int, int> pii;const double pi = acos(-1.0); const double eps = 1e-7; const int inf = 0x3f3f3f3f;inline ll read() {ll f = 1, x = 0;char c = getchar();while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (c ^ 48);c = getchar();}return f * x; }const int N = 5e4 + 10;bool st[N];vector<int> prime;int n, m, mu[N];ll sum[N];void mobius() {st[0] = st[1] = mu[1] = 1;for(int i = 2; i < N; i++) {if(!st[i]) {prime.pb(i);mu[i] = -1;}for(int j = 0; j < prime.size() && i * prime[j] < N; j++) {st[i * prime[j]] = 1;if(i % prime[j] == 0) break;mu[i * prime[j]] = -mu[i];}}for(int i = 1; i < N; i++) {mu[i] += mu[i - 1];for(ll l = 1, r; l <= i; l = r + 1) {r = i / (i / l);sum[i] += (i / l) * (r - l + 1);}} }int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);mobius();int T = read();while(T--) {ll n = read(), m = read(), ans = 0;if(n > m) swap(n, m);for(ll l = 1, r; l <= n; l = r + 1) {r = min(n / (n / l), m / (m / l));ans += 1ll * (mu[r] - mu[l - 1]) * sum[n / l] * sum[m / l];}printf("%lld\n", ans);}return 0; }總結(jié)
以上是生活随笔為你收集整理的P3327 [SDOI2015]约数个数和 (mobius反演)的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 一个月减肥多少斤比较合理
- 下一篇: 啤酒肚怎么减肥最快最有效