[51 nod 123] 最大公约数之和 V3(杜教筛)
1237 最大公約數(shù)之和 V3
推式子
∑i=1n∑j=1ngcd(i,j)=∑d=1nd∑i=1n∑j=1n(gcd(i,j)==d)=∑d=1nd∑i=1nd∑j=1nd(gcd(i,j)==1)=∑d=1nd∑i=1nd∑j=1nd∑k∣gcd(i,j)μ(k)=∑d=1nd∑k=1ndμ(k)∑i=1nkd∑j=1nkd1套路地設(shè)t=kd=∑t=1n(?nt?)2∑d∣tdμ(td)=∑t=1n(?nt?)2?(t)接下來就是杜教篩求∑i=1n?(i)了,那這不就是杜教篩水題了嘛。\sum_{i = 1} ^{n} \sum_{j = 1} ^{n} gcd(i, j)\\ = \sum_{d = 1} ^{n} d\sum_{i = 1} ^ {n} \sum_{j = 1} ^ {n} (gcd(i, j) == d)\\ = \sum_{d = 1} ^{n} d\sum_{i = 1} ^{\frac{n}ze8trgl8bvbq} \sum_{j = 1} ^{\frac{n}ze8trgl8bvbq}(gcd(i, j) == 1)\\ = \sum_{d = 1} ^{n} d\sum_{i = 1} ^{\frac{n}ze8trgl8bvbq} \sum_{j = 1} ^{\frac{n}ze8trgl8bvbq} \sum_{k \mid gcd(i, j)} \mu(k)\\ = \sum_{d = 1} ^{n} d\sum_{k = 1} ^{\frac{n}ze8trgl8bvbq} \mu(k) \sum_{i = 1} ^{\frac{n}{kd}} \sum_{j = 1} ^{\frac{n}{kd}}1\\ 套路地設(shè)t = kd\\ =\sum_{t = 1} ^{n} \left(\lfloor\frac{n}{t}\rfloor \right) ^ 2 \sum_{d \mid t} d \mu(\frac{t}ze8trgl8bvbq)\\ =\sum_{t = 1} ^{n} \left(\lfloor\frac{n}{t}\rfloor \right) ^ 2 \phi(t)\\ 接下來就是杜教篩求\sum_{i = 1} ^{n} \phi(i)了,那這不就是杜教篩水題了嘛。 i=1∑n?j=1∑n?gcd(i,j)=d=1∑n?di=1∑n?j=1∑n?(gcd(i,j)==d)=d=1∑n?di=1∑dn??j=1∑dn??(gcd(i,j)==1)=d=1∑n?di=1∑dn??j=1∑dn??k∣gcd(i,j)∑?μ(k)=d=1∑n?dk=1∑dn??μ(k)i=1∑kdn??j=1∑kdn??1套路地設(shè)t=kd=t=1∑n?(?tn??)2d∣t∑?dμ(dt?)=t=1∑n?(?tn??)2?(t)接下來就是杜教篩求i=1∑n??(i)了,那這不就是杜教篩水題了嘛。
代碼
/*Author : lifehappy */ #pragma GCC optimize(2) #pragma GCC optimize(3) #include <bits/stdc++.h>#define mp make_pair #define pb push_back #define endl '\n' #define mid (l + r >> 1) #define lson rt << 1, l, mid #define rson rt << 1 | 1, mid + 1, r #define ls rt << 1 #define rs rt << 1 | 1using namespace std;typedef long long ll; typedef unsigned long long ull; typedef pair<int, int> pii;const double pi = acos(-1.0); const double eps = 1e-7; const int inf = 0x3f3f3f3f;inline ll read() {ll f = 1, x = 0;char c = getchar();while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (c ^ 48);c = getchar();}return f * x; }const int N = 8e6 + 10, mod = 1000000007;ll phi[N], inv2;int prime[N], cnt;bool st[N];ll quick_pow(ll a, ll n, ll mod) {ll ans = 1;while(n) {if(n & 1) ans = ans * a % mod;a = a * a % mod;n >>= 1;}return ans; }void init() {phi[1] = 1;for(int i = 2; i < N; i++) {if(!st[i]) {prime[cnt++] = i;phi[i] = i - 1;}for(int j = 0; j < cnt && 1ll * i * prime[j] < N; j++) {st[i * prime[j]] = 1;if(i % prime[j] == 0) {phi[i * prime[j]] = phi[i] * prime[j];break;}phi[i * prime[j]] = phi[i] * (prime[j] - 1);}}for(int i = 1; i < N; i++) {phi[i] = (phi[i - 1] + phi[i]) % mod;}inv2 = quick_pow(2, mod - 2, mod); }ll calc(ll x) {x %= mod;return x * (x + 1) % mod * inv2 % mod; }map<ll, ll> ans_phi;ll get_phi(ll x) {if(x < N) return phi[x];if(ans_phi.count(x)) return ans_phi[x];ll ans = calc(x);for(ll l = 2, r; l <= x; l = r + 1) {r = x / (x / l);ans = (ans - (r - l + 1) % mod * get_phi(x / l) % mod + mod) % mod;}return ans_phi[x] = ans; }ll calc2(ll x) {x %= mod;return x * x % mod; }int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);ll n = read(), ans = 0;init();for(ll l = 1, r; l <= n; l = r + 1) {r = n / (n / l);ans = (ans + calc2(n / l) * (get_phi(r) - get_phi(l - 1)) % mod + mod) % mod;}cout << ans << endl;return 0; }總結(jié)
以上是生活随笔為你收集整理的[51 nod 123] 最大公约数之和 V3(杜教筛)的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 大蒜油的功效与作用
- 下一篇: F. Ivan and Burgers(