1190 最小公倍数之和 V2
1190 最小公倍數(shù)之和 V2
∑i=ablcm(i,b)∑i=abi×bgcd?(i,b)b∑d∣b∑i=?ad?bdi[gcd(i,bd)=1]b∑d∣b∑k∣bdμ(k)k∑i=??ad?k?abkib∑T∣n∑i=?aT?bTi∑k∣Tμ(k)kb∑T∣n(bT+?aT?)×(bT??aT?+1)2∑k∣Tμ(k)k設(shè)f(n)=∑d∣nμ(d)d,f(1)=1,f(p)=1?p,f(pk)=1?p,且為積性函數(shù)\sum_{i = a} ^{b} lcm(i, b)\\ \sum_{i = a} ^{b} \frac{i \times b}{\gcd(i, b)}\\ b \sum_{d \mid b} \sum_{i = \lceil \frac{a}ze8trgl8bvbq \rceil} ^{\frac{b}ze8trgl8bvbq} i [gcd(i, \frac{b}ze8trgl8bvbq) = 1]\\ b \sum_{d \mid b} \sum_{k \mid \frac{b}ze8trgl8bvbq} \mu(k) k \sum_{i = \lceil \frac{ \lceil \frac{a}ze8trgl8bvbq \rceil}{k} \rceil} ^{\frac{a}{bk}}i\\ b \sum_{T \mid n} \sum_{i = \lceil \frac{a}{T} \rceil} ^{\frac{b}{T}} i \sum_{k \mid T} \mu(k) k\\ b \sum_{T \mid n} \frac{ (\frac{b}{T} + \lceil \frac{a}{T} \rceil) \times ( \frac{b}{T} - \lceil \frac{a}{T} \rceil + 1)}{2} \sum_{k \mid T} \mu(k) k\\ 設(shè)f(n) = \sum_{d \mid n} \mu(d) d,f(1) = 1, f(p) = 1 - p, f(p ^ k) = 1- p,且為積性函數(shù)\\ i=a∑b?lcm(i,b)i=a∑b?gcd(i,b)i×b?bd∣b∑?i=?da??∑db??i[gcd(i,db?)=1]bd∣b∑?k∣db?∑?μ(k)ki=?k?da????∑bka??ibT∣n∑?i=?Ta??∑Tb??ik∣T∑?μ(k)kbT∣n∑?2(Tb?+?Ta??)×(Tb???Ta??+1)?k∣T∑?μ(k)k設(shè)f(n)=d∣n∑?μ(d)d,f(1)=1,f(p)=1?p,f(pk)=1?p,且為積性函數(shù)
所以最后我們只要2prime_facofb2 ^{prime\_fac\ of\ b}2prime_fac?of?b的復(fù)雜度去枚舉ddd即可。
/*Author : lifehappy */ #pragma GCC optimize(2) #pragma GCC optimize(3) #include <bits/stdc++.h>#define mp make_pair #define pb push_back #define endl '\n' #define mid (l + r >> 1) #define lson rt << 1, l, mid #define rson rt << 1 | 1, mid + 1, r #define ls rt << 1 #define rs rt << 1 | 1using namespace std;typedef long long ll; typedef unsigned long long ull; typedef pair<int, int> pii;const double pi = acos(-1.0); const double eps = 1e-7; const int inf = 0x3f3f3f3f;inline ll read() {ll f = 1, x = 0;char c = getchar();while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (c ^ 48);c = getchar();}return f * x; }const int N = 1e5 + 10, mod = 1e9 + 7;int prime[N], cnt;bool st[N];void init() {for(int i = 2; i < N; i++) {if(!st[i]) prime[cnt++] = i;for(int j = 0; j < cnt && i * prime[j] < N; j++) {st[i * prime[j]] = 1;if(i % prime[j] == 0) break;}} }ll a, b, ans;int fac[50], num[50], tot;void dfs(int step, ll T, ll g){if(step == tot + 1){ans = (ans + ((1 + b / T ) * (b / T) / 2 - (1 + a / T) * (a / T) / 2) % mod * g % mod) % mod;return ;}ll sum = 1;dfs(step + 1, T * sum, g);for(int i = 1; i <= num[step]; i++){sum = sum * fac[step];dfs(step + 1, T * sum, g * (1 - fac[step]));} }int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);init();int T = read();while(T--) {a = read() - 1, b = read(); ll n = b;tot = 0;for(int i = 0; prime[i] * prime[i] <= n; i++) {if(n % prime[i] == 0) {tot++;fac[tot] = prime[i], num[tot] = 0;while(n % prime[i] == 0) {n /= prime[i];num[tot]++;}}}if(n != 1) {tot++;fac[tot] = n, num[tot] = 1;}ans = 0;dfs(1, 1, 1);printf("%lld\n",(ans * b % mod + mod) % mod);}return 0; }總結(jié)
以上是生活随笔為你收集整理的1190 最小公倍数之和 V2的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 生吃黑芝麻的功效与作用、禁忌和食用方法
- 下一篇: 白水牛角的功效与作用、禁忌和食用方法