G. GCD Festival(莫比乌斯、欧拉函数)
G. GCD Festival
∑i=1n∑j=1ngcd?(ai,aj)gcd?(i,j)∑d=1nd∑i=1nd∑j=1ndgcd?(aid,ajd)[gcd?(i,j)=1]∑d=1nd∑k=1ndμ(k)∑i=1nkd∑j=1nkdgcd?(aikd,ajkd)T=kd∑T=1n∑i=1nT∑j=1nTgcd?(aiT,ajT)∑d∣Tdμ(Td)∑T=1n?(T)∑i=1nT∑j=1nTgcd?(aiT,ajT)\sum_{i = 1} ^{n} \sum_{j = 1} ^{n} \gcd(a_i, a_j) \gcd(i, j)\\ \sum_{d = 1} ^{n} d \sum_{i = 1} ^{\frac{n}ze8trgl8bvbq} \sum_{j = 1} ^{\frac{n}ze8trgl8bvbq} \gcd(a_{id}, a_{jd})[\gcd(i, j) = 1]\\ \sum_{d = 1} ^{n} d \sum_{k = 1} ^{\frac{n}ze8trgl8bvbq} \mu(k) \sum_{i = 1} ^{\frac{n}{kd}} \sum_{j = 1} ^{\frac{n}{kd}} \gcd(a_{i kd}, a_{jkd})\\ T = kd\\ \sum_{T = 1} ^{n} \sum_{i = 1} ^{\frac{n}{T}} \sum_{j = 1} ^{\frac{n}{T}} \gcd(a_{iT}, a_{jT}) \sum_{d \mid T} d \mu(\frac{T}ze8trgl8bvbq)\\ \sum_{T = 1} ^{n} \phi(T) \sum_{i = 1} ^{\frac{n}{T}} \sum_{j = 1} ^{\frac{n}{T}} \gcd(a_{iT}, a_{jT})\\ i=1∑n?j=1∑n?gcd(ai?,aj?)gcd(i,j)d=1∑n?di=1∑dn??j=1∑dn??gcd(aid?,ajd?)[gcd(i,j)=1]d=1∑n?dk=1∑dn??μ(k)i=1∑kdn??j=1∑kdn??gcd(aikd?,ajkd?)T=kdT=1∑n?i=1∑Tn??j=1∑Tn??gcd(aiT?,ajT?)d∣T∑?dμ(dT?)T=1∑n??(T)i=1∑Tn??j=1∑Tn??gcd(aiT?,ajT?)
我們考慮設f(n,T)=∑i=1nT∑j=1nTgcd?(aiT,ajT)f(n, T) = \sum\limits_{i = 1} ^{\frac{n}{T}} \sum\limits_{j = 1} ^{\frac{n}{T}} \gcd(a_{iT}, a_{jT})f(n,T)=i=1∑Tn??j=1∑Tn??gcd(aiT?,ajT?),g(x)g(x)g(x)為i∈[T,2T,…,nTT]i \in [T, 2T, \dots, \frac{n}{T} T]i∈[T,2T,…,Tn?T]時xxx的出現次數。
f(n,T)=∑i=1m∑j=1mg(i)g(j)gcd?(i,j),(m=105)∑d=1md∑i=1md∑j=1mdg(id)g(jd)[gcd?(i,j)=1]∑d=1md∑k=1ndμ(k)(∑i=1mkdg(ikd))2T=kd∑T=1m?(T)(∑i=1mTg(iT))2f(n, T) = \sum_{i = 1} ^{m} \sum_{j = 1} ^{m} g(i) g(j) \gcd(i, j), (m = 10 ^ 5)\\ \sum_{d = 1} ^{m} d \sum_{i = 1} ^{\frac{m}ze8trgl8bvbq} \sum_{j = 1} ^{\frac{m}ze8trgl8bvbq} g(id) g(jd) [\gcd(i, j) = 1]\\ \sum_{d = 1} ^{m} d \sum_{k = 1} ^{\frac{n}ze8trgl8bvbq} \mu(k) \left( \sum_{i = 1} ^{\frac{m}{kd}} g(ikd) \right) ^ 2\\ T = kd\\ \sum_{T = 1} ^{m} \phi(T) \left( \sum_{i = 1} ^{\frac{m}{T}} g(iT) \right) ^ 2\\ f(n,T)=i=1∑m?j=1∑m?g(i)g(j)gcd(i,j),(m=105)d=1∑m?di=1∑dm??j=1∑dm??g(id)g(jd)[gcd(i,j)=1]d=1∑m?dk=1∑dn??μ(k)???i=1∑kdm??g(ikd)???2T=kdT=1∑m??(T)???i=1∑Tm??g(iT)???2
考慮重新定義g(n)g(n)g(n)表示為是nnn的倍數的數字有多少個,則上式可以直接寫成:
∑T=1m?(T)g(T)2\sum_{T = 1} ^{m} \phi(T) g(T) ^ 2\\ T=1∑m??(T)g(T)2
由此我們可以在O(nlog?2n)O(n \log ^ 2n)O(nlog2n)的時間內完成這題。
總結
以上是生活随笔為你收集整理的G. GCD Festival(莫比乌斯、欧拉函数)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: K. Easy Sigma(类欧几里得)
- 下一篇: 英特尔第五代 Emerald Rapid