python图像分割算法_用python实现随机森林图像分割
下面是python中的一個(gè)隨機(jī)森林實(shí)現(xiàn)。在
如果您需要它進(jìn)行圖像分割,我建議您使用ITKsnap,監(jiān)督學(xué)習(xí),分割包,它使用隨機(jī)森林,并在python中實(shí)現(xiàn)。
這很簡單,你可以插入或定義你的標(biāo)簽和訓(xùn)練你的數(shù)據(jù)。你可以玩你的學(xué)習(xí)參數(shù),如樹的數(shù)量或深度。
這是一個(gè)如何對大腦數(shù)據(jù)進(jìn)行分割的示例:import numpy as np
import csv as csv
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.cross_validation import StratifiedKFold # Add important libs
# Training:
train=[]
test=[] #Array Definition
path1 = r'D:\random forest\data set\train.csv' #Address Definition
path2 = r'D:\random forest\data set\test.csv'
with open(path1, 'r') as f1: #Open File as read by 'r'
reader = csv.reader(f1)
next(reader, None) #Skip header because file header is not needed
for row in reader: #fill array by file info by for loop
train.append(row)
train = np.array(train)
with open(path2, 'r') as f2:
reader2 = csv.reader(f2)
next(reader2, None)
for row2 in reader2:
test.append(row2)
test = np.array(test)
train = np.delete(train,[0],1)
test = np.delete(test,[0],1)
# Optimization
parameter_gridsearch = {
'max_depth' : [3, 4], #depth of each decision tree
'n_estimators': [50, 20], #count of decision tree
'max_features': ['sqrt', 'auto', 'log2'],
'min_samples_split': [2],
'min_samples_leaf': [1, 3, 4],
'bootstrap': [True, False],
}
# RF classification
randomForestClassifier()
crossvalidation = StratifiedKFold(train[0::,0] , n_folds=5)
gridsearch = GridSearchCV(randomforest, #grid search for algorithm optimization
scoring='accuracy',
param_grid=parameter_gridsearch,
cv=crossvalidation)
gridsearch.fit(train[0::,1::], train[0::,0]) #train[0::,0] is as target
model = gridsearch
parameters = gridsearch.best_params_
總結(jié)
以上是生活随笔為你收集整理的python图像分割算法_用python实现随机森林图像分割的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: (2.1)【经典木马-冰河木马】详细介绍
- 下一篇: 常用运行命令大全