python 二分类的实例_keras分类之二分类实例(Cat and dog)
1. 數據準備
在文件夾下分別建立訓練目錄train,驗證目錄validation,測試目錄test,每個目錄下建立dogs和cats兩個目錄,在dogs和cats目錄下分別放入拍攝的狗和貓的圖片,圖片的大小可以不一樣。
2. 數據讀取
# 存儲數據集的目錄
base_dir = 'E:/python learn/dog_and_cat/data/'
# 訓練、驗證數據集的目錄
train_dir = os.path.join(base_dir, 'train')
validation_dir = os.path.join(base_dir, 'validation')
test_dir = os.path.join(base_dir, 'test')
# 貓訓練圖片所在目錄
train_cats_dir = os.path.join(train_dir, 'cats')
# 狗訓練圖片所在目錄
train_dogs_dir = os.path.join(train_dir, 'dogs')
# 貓驗證圖片所在目錄
validation_cats_dir = os.path.join(validation_dir, 'cats')
# 狗驗證數據集所在目錄
validation_dogs_dir = os.path.join(validation_dir, 'dogs')
print('total training cat images:', len(os.listdir(train_cats_dir)))
print('total training dog images:', len(os.listdir(train_dogs_dir)))
print('total validation cat images:', len(os.listdir(validation_cats_dir)))
print('total validation dog images:', len(os.listdir(validation_dogs_dir)))
3. 模型建立
# 搭建模型
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu',
input_shape=(150, 150, 3)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
print(model.summary())
model.compile(loss='binary_crossentropy',
optimizer=RMSprop(lr=1e-4),
metrics=['acc'])
4. 模型訓練
train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
train_dir, # target directory
target_size=(150, 150), # resize圖片
batch_size=20,
class_mode='binary'
)
validation_generator = test_datagen.flow_from_directory(
validation_dir,
target_size=(150, 150),
batch_size=20,
class_mode='binary'
)
for data_batch, labels_batch in train_generator:
print('data batch shape:', data_batch.shape)
print('labels batch shape:', labels_batch.shape)
break
hist = model.fit_generator(
train_generator,
steps_per_epoch=100,
epochs=10,
validation_data=validation_generator,
validation_steps=50
)
model.save('cats_and_dogs_small_1.h5')
5. 模型評估
acc = hist.history['acc']
val_acc = hist.history['val_acc']
loss = hist.history['loss']
val_loss = hist.history['val_loss']
epochs = range(len(acc))
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.legend()
plt.show()
6. 預測
imagename = 'E:/python learn/dog_and_cat/data/validation/dogs/dog.2026.jpg'
test_image = image.load_img(imagename, target_size = (150, 150))
test_image = image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis=0)
result = model.predict(test_image)
if result[0][0] == 1:
prediction ='dog'
else:
prediction ='cat'
print(prediction)
代碼在spyder下運行正常,一般情況下,可以將文件分為兩個部分,一部分為Train.py,包含深度學習模型建立、訓練和模型的存儲,另一部分Predict.py,包含模型的讀取,評價和預測
補充知識:keras 貓狗大戰自搭網絡以及vgg16應用
導入模塊
import os
import numpy as np
import tensorflow as tf
import random
import seaborn as sns
import matplotlib.pyplot as plt
import keras
from keras.models import Sequential, Model
from keras.layers import Dense, Dropout, Activation, Flatten, Input,BatchNormalization
from keras.layers.convolutional import Conv2D, MaxPooling2D
from keras.optimizers import RMSprop, Adam, SGD
from keras.preprocessing import image
from keras.preprocessing.image import ImageDataGenerator
from keras.applications.vgg16 import VGG16, preprocess_input
from sklearn.model_selection import train_test_split
加載數據集
def read_and_process_image(data_dir,width=64, height=64, channels=3, preprocess=False):
train_images= [data_dir + i for i in os.listdir(data_dir)]
random.shuffle(train_images)
def read_image(file_path, preprocess):
img = image.load_img(file_path, target_size=(height, width))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
# if preprocess:
# x = preprocess_input(x)
return x
def prep_data(images, proprocess):
count = len(images)
data = np.ndarray((count, height, width, channels), dtype = np.float32)
for i, image_file in enumerate(images):
image = read_image(image_file, preprocess)
data[i] = image
return data
def read_labels(file_path):
labels = []
for i in file_path:
label = 1 if 'dog' in i else 0
labels.append(label)
return labels
X = prep_data(train_images, preprocess)
labels = read_labels(train_images)
assert X.shape[0] == len(labels)
print("Train shape: {}".format(X.shape))
return X, labels
讀取數據集
# 讀取圖片
WIDTH = 150
HEIGHT = 150
CHANNELS = 3
X, y = read_and_process_image('D:\\Python_Project\\train\\',width=WIDTH, height=HEIGHT, channels=CHANNELS)
查看數據集信息
# 統計y
sns.countplot(y)
# 顯示圖片
def show_cats_and_dogs(X, idx):
plt.figure(figsize=(10,5), frameon=True)
img = X[idx,:,:,::-1]
img = img/255
plt.imshow(img)
plt.show()
for idx in range(0,3):
show_cats_and_dogs(X, idx)
train_X = X[0:17500,:,:,:]
train_y = y[0:17500]
test_X = X[17500:25000,:,:,:]
test_y = y[17500:25000]
train_X.shape
test_X.shape
自定義神經網絡層數
input_layer = Input((WIDTH, HEIGHT, CHANNELS))
# 第一層
z = input_layer
z = Conv2D(64, (3,3))(z)
z = BatchNormalization()(z)
z = Activation('relu')(z)
z = MaxPooling2D(pool_size = (2,2))(z)
z = Conv2D(64, (3,3))(z)
z = BatchNormalization()(z)
z = Activation('relu')(z)
z = MaxPooling2D(pool_size = (2,2))(z)
z = Conv2D(128, (3,3))(z)
z = BatchNormalization()(z)
z = Activation('relu')(z)
z = MaxPooling2D(pool_size = (2,2))(z)
z = Conv2D(128, (3,3))(z)
z = BatchNormalization()(z)
z = Activation('relu')(z)
z = MaxPooling2D(pool_size = (2,2))(z)
z = Flatten()(z)
z = Dense(64)(z)
z = BatchNormalization()(z)
z = Activation('relu')(z)
z = Dropout(0.5)(z)
z = Dense(1)(z)
z = Activation('sigmoid')(z)
model = Model(input_layer, z)
model.compile(
optimizer = keras.optimizers.RMSprop(),
loss = keras.losses.binary_crossentropy,
metrics = [keras.metrics.binary_accuracy]
)
model.summary()
訓練模型
history = model.fit(train_X,train_y, validation_data=(test_X, test_y),epochs=10,batch_size=128,verbose=True)
score = model.evaluate(test_X, test_y, verbose=0)
print("Large CNN Error: %.2f%%" %(100-score[1]*100))
復用vgg16模型
def vgg16_model(input_shape= (HEIGHT,WIDTH,CHANNELS)):
vgg16 = VGG16(include_top=False, weights='imagenet',input_shape=input_shape)
for layer in vgg16.layers:
layer.trainable = False
last = vgg16.output
# 后面加入自己的模型
x = Flatten()(last)
x = Dense(256, activation='relu')(x)
x = Dropout(0.5)(x)
x = Dense(256, activation='relu')(x)
x = Dropout(0.5)(x)
x = Dense(1, activation='sigmoid')(x)
model = Model(inputs=vgg16.input, outputs=x)
return model
編譯模型
model_vgg16 = vgg16_model()
model_vgg16.summary()
model_vgg16.compile(loss='binary_crossentropy',optimizer = Adam(0.0001), metrics = ['accuracy'])
訓練模型
# 訓練模型
history = model_vgg16.fit(train_X,train_y, validation_data=(test_X, test_y),epochs=5,batch_size=128,verbose=True)
score = model_vgg16.evaluate(test_X, test_y, verbose=0)
print("Large CNN Error: %.2f%%" %(100-score[1]*100))
以上這篇keras分類之二分類實例(Cat and dog)就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持腳本之家。
總結
以上是生活随笔為你收集整理的python 二分类的实例_keras分类之二分类实例(Cat and dog)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 域名服务器的作用是什么
- 下一篇: 如何用Flash制作一个跳动的黄色笑脸小