python apriori_python apriori算法代码怎么实现
展開全部
class Apriori(object):
def __init__(self, filename, min_support, item_start, item_end):
self.filename = filename
self.min_support = min_support # 最小支持度
self.min_confidence = 50
self.line_num = 0 # item的行數(shù)2113
self.item_start = item_start # 取哪行的item
self.item_end = item_end
self.location = [[i] for i in range(self.item_end - self.item_start + 1)]
self.support = self.sut(self.location)
self.num = list(sorted(set([j for i in self.location for j in i])))# 記錄item
self.pre_support = [] # 保存前一個5261support,location,num
self.pre_location = []
self.pre_num = []
self.item_name = [] # 項目名
self.find_item_name()
self.loop()
self.confidence_sup()
def deal_line(self, line):
"提取出需要的項"
return [i.strip() for i in line.split(' ') if i][self.item_start - 1:self.item_end]
def find_item_name(self):
"根據(jù)4102第一行抽取item_name"
with open(self.filename, 'r') as F:
for index,line in enumerate(F.readlines()):
if index == 0:
self.item_name = self.deal_line(line)
break
def sut(self, location):
"""
輸入1653[[1,2,3],[2,3,4],[1,3,5]...]
輸出每個位置集的support [123,435,234...]
"""
with open(self.filename, 'r') as F:
support = [0] * len(location)
for index,line in enumerate(F.readlines()):
if index == 0: continue
# 提取每信息
item_line = self.deal_line(line)
for index_num,i in enumerate(location):
flag = 0
for j in i:
if item_line[j] != 'T':
flag = 1
break
if not flag:
support[index_num] += 1
self.line_num = index # 一共多少行,出去第一行的item_name
return support
def select(self, c):
"返回位置"
stack = []
for i in self.location:
for j in self.num:
if j in i:
if len(i) == c:
stack.append(i)
else:
stack.append([j] + i)
# 多重列表去重
import itertools
s = sorted([sorted(i) for i in stack])
location = list(s for s,_ in itertools.groupby(s))
return location
def del_location(self, support, location):
"清除不滿足條件的候選集"
# 小于最小支持度的剔除
for index,i in enumerate(support):
if i < self.line_num * self.min_support / 100:
support[index] = 0
# apriori第二條規(guī)則,剔除
for index,j in enumerate(location):
sub_location = [j[:index_loc] + j[index_loc+1:]for index_loc in range(len(j))]
flag = 0
for k in sub_location:
if k not in self.location:
flag = 1
break
if flag:
support[index] = 0
# 刪除沒用的位置
location = [i for i,j in zip(location,support) if j != 0]
support = [i for i in support if i != 0]
return support, location
def loop(self):
"s級頻繁項級的迭代"
s = 2
while True:
print '-'*80
print 'The' ,s - 1,'loop'
print 'location' , self.location
print 'support' , self.support
print 'num' , self.num
print '-'*80
# 生成下一級候選集
location = self.select(s)
support = self.sut(location)
support, location = self.del_location(support, location)
num = list(sorted(set([j for i in location for j in i])))
s += 1
if location and support and num:
self.pre_num = self.num
self.pre_location = self.location
self.pre_support = self.support
self.num = num
self.location = location
self.support = support
else:
break
def confidence_sup(self):
"計算confidence"
if sum(self.pre_support) == 0:
print 'min_support error' # 第一次迭代即失敗
else:
for index_location,each_location in enumerate(self.location):
del_num = [each_location[:index] + each_location[index+1:] for index in range(len(each_location))] # 生成上一級頻繁項級
del_num = [i for i in del_num if i in self.pre_location] # 刪除不存在上一級頻繁項級子集
del_support = [self.pre_support[self.pre_location.index(i)] for i in del_num if i in self.pre_location] # 從上一級支持度查找
# print del_num
# print self.support[index_location]
# print del_support
for index,i in enumerate(del_num): # 計算每個關(guān)聯(lián)規(guī)則支持度和自信度
index_support = 0
if len(self.support) != 1:
index_support = index
support = float(self.support[index_location])/self.line_num * 100 # 支持度
s = [j for index_item,j in enumerate(self.item_name) if index_item in i]
if del_support[index]:
confidence = float(self.support[index_location])/del_support[index] * 100
if confidence > self.min_confidence:
print ','.join(s) , '->>' , self.item_name[each_location[index]] , ' min_support: ' , str(support) + '%' , ' min_confidence:' , str(confidence) + '%'
def main():
c = Apriori('basket.txt', 14, 3, 13)
d = Apriori('simple.txt', 50, 2, 6)
if __name__ == '__main__':
main()
Apriori(filename, min_support, item_start, item_end)
參數(shù)說明
filename:(路徑)文件名
min_support:最小支持度
item_start:item起始位置
item_end:item結(jié)束位置import apriori
c = apriori.Apriori('basket.txt', 11, 3, 13)
輸出:
總結(jié)
以上是生活随笔為你收集整理的python apriori_python apriori算法代码怎么实现的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 头部车企打架尾部遭殃 恒驰汽车北京仅剩一
- 下一篇: 全球首款RISC-V笔记本ROMA发布!