R语言观察日志(part2)--preProcess函数
生活随笔
收集整理的這篇文章主要介紹了
R语言观察日志(part2)--preProcess函数
小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.
學習筆記,僅供參考,有錯必糾,按需更新
PS:大量參考R的幫助文檔,照搬英文不翻譯
preProcess函數(shù)
所在包:caret
描述
Pre-processing transformation (centering, scaling etc.) can be estimated from the training data and applied to any data set with the same variables.
使用
preProcess(x, ...)## Default S3 method: preProcess(x, method = c("center", "scale"),thresh = 0.95, pcaComp = NULL, na.remove = TRUE, k = 5,knnSummary = mean, outcome = NULL, fudge = 0.2, numUnique = 3,verbose = FALSE, freqCut = 95/5, uniqueCut = 10, cutoff = 0.9,rangeBounds = c(0, 1), ...)## S3 method for class 'preProcess' predict(object, newdata, ...)
參數(shù)
| x | a matrix or data frame. Non-numeric predictors are allowed but will be ignored. |
| method | a character vector specifying the type of processing. Possible values are “BoxCox”, “YeoJohnson”, “expoTrans”, “center”, “scale”, “range”, “knnImpute”, “bagImpute”, “medianImpute”, “pca”, “ica”, “spatialSign”, “corr”, “zv”, “nzv”, and “conditionalX” (see Details below) |
舉個例子
dfTest3 <- iris[, -length(iris)]head(dfTest3, 3) centerDf <- preProcess(dfTest3) #默認中心化標準化 pre_Df <- predict(centerDf, dfTest3) head(pre_Df, 3)head(dfTest3, 3) centerDf <- preProcess(dfTest3, method = "center") #中心化 pre_Df <- predict(centerDf, dfTest3) head(pre_Df, 3)head(dfTest3, 3) centerDf <- preProcess(dfTest3, method = "BoxCox") #BoxCox變換 pre_Df <- predict(centerDf, dfTest3) head(pre_Df, 3)head(dfTest3, 3) centerDf <- preProcess(dfTest3, method = "range") #取值在0-1之間 pre_Df <- predict(centerDf, dfTest3) head(pre_Df, 3)
輸出:
> head(dfTest3, 3)Sepal.Length Sepal.Width Petal.Length Petal.Width 1 5.1 3.5 1.4 0.2 2 4.9 3.0 1.4 0.2 3 4.7 3.2 1.3 0.2 > head(pre_Df, 3)Sepal.Length Sepal.Width Petal.Length Petal.Width 1 -0.8976739 1.0156020 -1.335752 -1.311052 2 -1.1392005 -0.1315388 -1.335752 -1.311052 3 -1.3807271 0.3273175 -1.392399 -1.311052 > > > head(dfTest3, 3)Sepal.Length Sepal.Width Petal.Length Petal.Width 1 5.1 3.5 1.4 0.2 2 4.9 3.0 1.4 0.2 3 4.7 3.2 1.3 0.2 > head(pre_Df, 3)Sepal.Length Sepal.Width Petal.Length Petal.Width 1 -0.7433333 0.44266667 -2.358 -0.9993333 2 -0.9433333 -0.05733333 -2.358 -0.9993333 3 -1.1433333 0.14266667 -2.458 -0.9993333 > > > head(dfTest3, 3)Sepal.Length Sepal.Width Petal.Length Petal.Width 1 5.1 3.5 1.4 0.2 2 4.9 3.0 1.4 0.2 3 4.7 3.2 1.3 0.2 > head(pre_Df, 3)Sepal.Length Sepal.Width Petal.Length Petal.Width 1 1.629241 1.520660 1.4 -1.032115 2 1.589235 1.301297 1.4 -1.032115 3 1.547563 1.391905 1.3 -1.032115 > > > head(dfTest3, 3)Sepal.Length Sepal.Width Petal.Length Petal.Width 1 5.1 3.5 1.4 0.2 2 4.9 3.0 1.4 0.2 3 4.7 3.2 1.3 0.2 > head(pre_Df, 3)Sepal.Length Sepal.Width Petal.Length Petal.Width 1 0.2222222 0.6250000 0.06779661 0.04166667 2 0.1666667 0.4166667 0.06779661 0.04166667 3 0.1111111 0.5000000 0.05084746 0.04166667總結(jié)
以上是生活随笔為你收集整理的R语言观察日志(part2)--preProcess函数的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 矛盾是事物发展的源泉和动力教案一等奖
- 下一篇: 关于带对字的网名72个