Fence Repair POJ - 3253
Farmer John wants to repair a small length of the fence around the pasture. He measures the fence and finds that he needs N (1 ≤ N ≤ 20,000) planks of wood, each having some integer length Li (1 ≤ Li ≤ 50,000) units. He then purchases a single long board just long enough to saw into the N planks (i.e., whose length is the sum of the lengths Li). FJ is ignoring the “kerf”, the extra length lost to sawdust when a sawcut is made; you should ignore it, too.
FJ sadly realizes that he doesn’t own a saw with which to cut the wood, so he mosies over to Farmer Don’s Farm with this long board and politely asks if he may borrow a saw.
Farmer Don, a closet capitalist, doesn’t lend FJ a saw but instead offers to charge Farmer John for each of the N-1 cuts in the plank. The charge to cut a piece of wood is exactly equal to its length. Cutting a plank of length 21 costs 21 cents.
Farmer Don then lets Farmer John decide the order and locations to cut the plank. Help Farmer John determine the minimum amount of money he can spend to create the N planks. FJ knows that he can cut the board in various different orders which will result in different charges since the resulting intermediate planks are of different lengths.
Input
Line 1: One integer N, the number of planks
Lines 2… N+1: Each line contains a single integer describing the length of a needed plank
Output
Line 1: One integer: the minimum amount of money he must spend to make N-1 cuts
Sample Input
3
8
5
8
Sample Output
34
Hint
He wants to cut a board of length 21 into pieces of lengths 8, 5, and 8.
The original board measures 8+5+8=21. The first cut will cost 21, and should be used to cut the board into pieces measuring 13 and 8. The second cut will cost 13, and should be used to cut the 13 into 8 and 5. This would cost 21+13=34. If the 21 was cut into 16 and 5 instead, the second cut would cost 16 for a total of 37 (which is more than 34).
Code
/*^....0^ .1 ^1^.. 011.^ 1.0^ 1 ^ ^0.11 ^ ^..^0. ^ 0^.0 1 .^.1 ^0 .........001^.1 1. .111100....01^00 11^ ^1. .1^1.^ ^0 0^.^ ^0..1.1 1..^1 .0 ^ ^00. ^^0.^^ 0 ^^110.^0 0 ^ ^^^10.01^^ 10 1 1 ^^^1110.101 10 1.1 ^^^1111110010 01 ^^ ^^^1111^1.^ ^^^10 10^ 0^ 1 ^^111^^^0.1^ 1....^11 0 ^^11^^^ 0.. ....1^ ^ ^1. 0^ ^11^^^ ^ 1 111^ ^ 0.10 00 11 ^^^^^ 1 0 1.0^ ^0 ^0 ^^^^ 0 0.0^ 1.0 .^ ^^^^ 1 1 .0^.^ ^^ 0^ ^1 ^^^^ 0. ^.11 ^ 11 1. ^^^ ^ ^ ..^^..^ ^1 ^.^ ^^^ .0 ^.00..^ ^0 01 ^^^ .. 0..^1 .. .1 ^.^ ^^^ 1 ^ ^0001^ 1. 00 0. ^^^ ^.0 ^.1. 0^. ^.^ ^.^ ^^^ ..0.01 .^^. .^ 1001 ^^ ^^^ . 1^. ^ ^. 11 0. 1 ^ ^^ 0.0 ^. 0 ^0 1 ^^^ 0.0.^ 1. 0^ 0 .1 ^^^ ...1 1. 00 . .1 ^^^ ..1 1. ^. 0 .^ ^^ ..0. 1. .^ . 0 ..1 1. 01 . . ^ 0^.^ 00 ^0 1. ^ 1 1.0 00 . ^^^^^^ ..^ 00 01 ..1. 00 10 1 ^^.1 00 ^. ^^^ .1.. 00 .1 1..01 ..1.1 00 1. ..^ 10^ 1^ 00 ^.1 0 1 1.1 00 00 ^ 1 ^. 00 ^.^ 10^ ^^1.1 00 00 10^..^ 1. ^. 1.0 1 ^. 00 00 .^^ ^. ^ 1 00 ^0000^ ^ 011 0 ^. 00.0^ ^00000 1.00.1 11. 1 0 1^^0.01 ^^^ 01.^ ^ 1 1^^ ^.^1 1 0... 1 ^1 1^ ^ .01 ^ 1.. 1.1 ^0.0^ 0 1..01^^100000..0^1 1 ^ 1 ^^1111^ ^^0 ^ ^ 1 1000^.1 ^.^ . 00.. 1.1 0. 01. . 1. .^1. 1 1. ^0^ . ^.1 00 01^.0 001. .^*/ /* Procedural objectives:Variables required by the program:Procedural thinking: 如果用二叉樹對應切割方法,每一個葉子節點就對應了切割出的一塊塊木板。 葉子節點的深度就對應了為了得到對應木板所需的切割次數,開銷的合計就是各葉子節點的 木板的長度*節點的深度。 于是,此時的最佳切割方法首先應該:最短的板與次短的板的節點應當是兄弟節點。對于最優解來講,最短的板應當是深度最大的葉子節點之一。 所以與這個葉子節點同一深度的兄弟節點一定存在,并且由于同樣是最深的葉子節點,所以應該對應于次短的板。 由于只需從板的集合里取出最短的兩塊,并且把長度為兩塊板長度之和的板加入集合中即可,因此如果使用優先隊列就可以高效的實現。 Functions required by the program:Determination algorithm:Determining data structure:*/ /* My dear Max said: "I like you, So the first bunch of sunshine I saw in the morning is you, The first gentle breeze that passed through my ear is you, The first star I see is also you. The world I see is all your shadow."FIGHTING FOR OUR FUTURE!!! */ #include <queue> #include <vector> #include <iostream> #include <algorithm> #include <functional> using namespace std;int N,L[20007];void solve(){long long ans=0;priority_queue< int,vector<int>,greater<int> > que;for(int i=0;i<N;i++)que.push(L[i]);while(que.size()>1){int l1,l2;l1=que.top();que.pop();l2=que.top();que.pop();ans+=l1+l2;que.push(l1+l2);}cout<<ans<<endl; }int main(){cin>>N;for(int i=0;i<N;i++)cin>>L[i];solve();return 0; }總結
以上是生活随笔為你收集整理的Fence Repair POJ - 3253的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: ACM-数论 —— 一.整除的性质
- 下一篇: 2013年第四届蓝桥杯C/C++ A组国