如何入门Python爬虫,你不妨先找个项目做一做
“入門”是良好的動機,但是可能作用緩慢。如果你手里或者腦子里有一個項目,那么實踐起來你會被目標驅動,而不會像學習模塊一樣慢慢學習。
另外如果說知識體系里的每一個知識點是圖里的點,依賴關系是邊的話,那么這個圖一定不是一個有向無環圖。因為學習A的經驗可以幫助你學習B。因此,你不需要學習怎么樣“入門”,因為這樣的“入門”點根本不存在!你需要學習的是怎么樣做一個比較大的東西,在這個過程中,你會很快地學會需要學會的東西的。當然,你可以爭論說需要先懂python,不然怎么學會python做爬蟲呢?但是事實上,你完全可以在做這個爬蟲的過程中學習python :D
看到前面很多答案都講的“術”——用什么軟件怎么爬,那我就講講“道”和“術”吧——爬蟲怎么工作以及怎么在python實現。
先長話短說summarize一下:
你需要學習
以下是短話長說:
說說當初寫的一個集群爬下整個豆瓣的經驗吧。
1)首先你要明白爬蟲怎樣工作。
想象你是一只蜘蛛,現在你被放到了互聯“網”上。那么,你需要把所有的網頁都看一遍。怎么辦呢?沒問題呀,你就隨便從某個地方開始,比如說人民日報的首頁,這個叫initial pages,用$表示吧。
在人民日報的首頁,你看到那個頁面引向的各種鏈接。于是你很開心地從爬到了“國內新聞”那個頁面。太好了,這樣你就已經爬完了倆頁面(首頁和國內新聞)!暫且不用管爬下來的頁面怎么處理的,你就想象你把這個頁面完完整整抄成了個html放到了你身上。
突然你發現, 在國內新聞這個頁面上,有一個鏈接鏈回“首頁”。作為一只聰明的蜘蛛,你肯定知道你不用爬回去的吧,因為你已經看過了啊。所以,你需要用你的腦子,存下你已經看過的頁面地址。這樣,每次看到一個可能需要爬的新鏈接,你就先查查你腦子里是不是已經去過這個頁面地址。如果去過,那就別去了。
好的,理論上如果所有的頁面可以從initial page達到的話,那么可以證明你一定可以爬完所有的網頁。
那么在python里怎么實現呢?
很簡單
import Queueinitial_page = "http://www.renminribao.com"url_queue = Queue.Queue() seen = set()seen.insert(initial_page) url_queue.put(initial_page)while(True): #一直進行直到海枯石爛if url_queue.size()>0:current_url = url_queue.get() #拿出隊例中第一個的urlstore(current_url) #把這個url代表的網頁存儲好for next_url in extract_urls(current_url): #提取把這個url里鏈向的urlif next_url not in seen: seen.put(next_url)url_queue.put(next_url)else:break寫得已經很偽代碼了。
所有的爬蟲的backbone都在這里,下面分析一下為什么爬蟲事實上是個非常復雜的東西——搜索引擎公司通常有一整個團隊來維護和開發。
2)效率
如果你直接加工一下上面的代碼直接運行的話,你需要一整年才能爬下整個豆瓣的內容。更別說Google這樣的搜索引擎需要爬下全網的內容了。
問題出在哪呢?需要爬的網頁實在太多太多了,而上面的代碼太慢太慢了。設想全網有N個網站,那么分析一下判重的復雜度就是N*log(N),因為所有網頁要遍歷一次,而每次判重用set的話需要log(N)的復雜度。OK,OK,我知道python的set實現是hash——不過這樣還是太慢了,至少內存使用效率不高。
通常的判重做法是怎樣呢?Bloom Filter. 簡單講它仍然是一種hash的方法,但是它的特點是,它可以使用固定的內存(不隨url的數量而增長)以O(1)的效率判定url是否已經在set中。可惜天下沒有白吃的午餐,它的唯一問題在于,如果這個url不在set中,BF可以100%確定這個url沒有看過。但是如果這個url在set中,它會告訴你:這個url應該已經出現過,不過我有2%的不確定性。注意這里的不確定性在你分配的內存足夠大的時候,可以變得很小很少。
注意到這個特點,url如果被看過,那么可能以小概率重復看一看(沒關系,多看看不會累死)。但是如果沒被看過,一定會被看一下(這個很重要,不然我們就要漏掉一些網頁了!)。 [IMPORTANT: 此段有問題,請暫時略過]
好,現在已經接近處理判重最快的方法了。另外一個瓶頸——你只有一臺機器。不管你的帶寬有多大,只要你的機器下載網頁的速度是瓶頸的話,那么你只有加快這個速度。用一臺機子不夠的話——用很多臺吧!當然,我們假設每臺機子都已經進了最大的效率——使用多線程(python的話,多進程吧)。
3)集群化抓取
爬取豆瓣的時候,我總共用了100多臺機器晝夜不停地運行了一個月。想象如果只用一臺機子你就得運行100個月了...
那么,假設你現在有100臺機器可以用,怎么用python實現一個分布式的爬取算法呢?
我們把這100臺中的99臺運算能力較小的機器叫作slave,另外一臺較大的機器叫作master,那么回顧上面代碼中的url_queue,如果我們能把這個queue放到這臺master機器上,所有的slave都可以通過網絡跟master聯通,每當一個slave完成下載一個網頁,就向master請求一個新的網頁來抓取。而每次slave新抓到一個網頁,就把這個網頁上所有的鏈接送到master的queue里去。同樣,bloom filter也放到master上,但是現在master只發送確定沒有被訪問過的url給slave。Bloom Filter放到master的內存里,而被訪問過的url放到運行在master上的Redis里,這樣保證所有操作都是O(1)。(至少平攤是O(1)
考慮如何用python實現:
在各臺slave上裝好scrapy,那么各臺機子就變成了一臺有抓取能力的slave,在master上裝好Redis和rq用作分布式隊列。
代碼于是寫成
#slave.pycurrent_url = request_from_master() to_send = [] for next_url in extract_urls(current_url):to_send.append(next_url)store(current_url); send_to_master(to_send)#master.py distributed_queue = DistributedQueue() bf = BloomFilter()initial_pages = "www.renmingribao.com"while(True):if request == 'GET':if distributed_queue.size()>0:send(distributed_queue.get())else:breakelif request == 'POST':bf.put(request.url)好的,其實你能想到,有人已經給你寫好了你需要的:darkrho/scrapy-redis · GitHub
4)展望及后處理
雖然上面用很多“簡單”,但是真正要實現一個商業規模可用的爬蟲并不是一件容易的事。上面的代碼用來爬一個整體的網站幾乎沒有太大的問題。
但是如果附加上你需要這些后續處理,比如
如你所想,這里每一個點都可以供很多研究者十數年的研究。雖然如此,
“路漫漫其修遠兮,吾將上下而求索”。
所以,不要問怎么入門,直接上路就好了:)也歡迎閱讀我正在寫的筆記:
?關于Python技術儲備
學好 Python 不論是就業還是做副業賺錢都不錯,但要學會 Python 還是要有一個學習規劃。
一、Python所有方向的學習路線
Python所有方向的技術點做的整理,形成各個領域的知識點匯總,它的用處就在于,你可以按照上面的知識點去找對應的學習資源,保證自己學得較為全面。
二、Python必備開發工具
?
三、精品Python學習書籍
當我學到一定基礎,有自己的理解能力的時候,會去閱讀一些前輩整理的書籍或者手寫的筆記資料,這些筆記詳細記載了他們對一些技術點的理解,這些理解是比較獨到,可以學到不一樣的思路。
四、Python視頻合集
觀看零基礎學習視頻,看視頻學習是最快捷也是最有效果的方式,跟著視頻中老師的思路,從基礎到深入,還是很容易入門的。
點擊免費領取:最全面的python全棧工程師學習路線
五、實戰案例
光學理論是沒用的,要學會跟著一起敲,要動手實操,才能將自己的所學運用到實際當中去,這時候可以搞點實戰案例來學習。
六、Python練習題
檢查學習結果。
七、面試資料
我們學習Python必然是為了找到高薪的工作,下面這些面試題是來自阿里、騰訊、字節等一線互聯網大廠最新的面試資料,并且有阿里大佬給出了權威的解答,刷完這一套面試資料相信大家都能找到滿意的工作。
大家拿到腦圖后,根據腦圖對應的學習路線,做好學習計劃制定。根據學習計劃的路線來逐步學習,正常情況下2個月以內,再結合文章中資料,就能夠很好地掌握Python并實現一些實踐功能。
?以上資料已打包好,戳下方鏈接免費領取
粉絲福利《Python學習資料》,免費領取!!!_Python棧機的博客-CSDN博客
總結
以上是生活随笔為你收集整理的如何入门Python爬虫,你不妨先找个项目做一做的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 怎么做怎么做怎么做
- 下一篇: 认识生产者和消费者模式