支持向量机SVM的python实现
生活随笔
收集整理的這篇文章主要介紹了
支持向量机SVM的python实现
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
用于分類的SVM:
class sklearn.svm.SVC(*, C=1.0, kernel='rbf', degree=3, gamma='scale', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', break_ties=False, random_state=None)https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
用于分類的線性SVM:
class sklearn.svm.LinearSVC(penalty='l2', loss='squared_hinge', *, dual=True, tol=0.0001,C=1.0, multi_class='ovr', fit_intercept=True, intercept_scaling=1, class_weight=None, verbose=0, random_state=None, max_iter=1000)https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html?highlight=linearsvc#sklearn.svm.LinearSVC
用于回歸的SVM:
class sklearn.svm.SVR(*, kernel='rbf', degree=3, gamma='scale', coef0=0.0, tol=0.001, C=1.0, epsilon=0.1, shrinking=True, cache_size=200, verbose=False, max_iter=-1)https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html?highlight=svr#sklearn.svm.SVR
用于回歸的線性SVM:
class sklearn.svm.LinearSVR(*, epsilon=0.0, tol=0.0001, C=1.0, loss='epsilon_insensitive', fit_intercept=True, intercept_scaling=1.0, dual=True, verbose=0, random_state=None, max_iter=1000)https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVR.html?highlight=svr#sklearn.svm.LinearSVR
?
總結
以上是生活随笔為你收集整理的支持向量机SVM的python实现的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: java tostring方法_Java
- 下一篇: android actionbar 背景