久久精品国产精品国产精品污,男人扒开添女人下部免费视频,一级国产69式性姿势免费视频,夜鲁夜鲁很鲁在线视频 视频,欧美丰满少妇一区二区三区,国产偷国产偷亚洲高清人乐享,中文 在线 日韩 亚洲 欧美,熟妇人妻无乱码中文字幕真矢织江,一区二区三区人妻制服国产

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

今日arXiv精选 | ICCV 2021/CIKM 2021/ACM MM 2021

發布時間:2024/10/8 编程问答 30 豆豆
生活随笔 收集整理的這篇文章主要介紹了 今日arXiv精选 | ICCV 2021/CIKM 2021/ACM MM 2021 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

?關于?#今日arXiv精選?

這是「AI 學術前沿」旗下的一檔欄目,編輯將每日從arXiv中精選高質量論文,推送給讀者。

SUNet: Symmetric Undistortion Network for Rolling Shutter Correction

發表會議: ICCV 2021

論文地址:?https://arxiv.org/abs/2108.04775

摘要

The vast majority of modern consumer-grade cameras employ a rolling shutter mechanism, leading to image distortions if the camera moves during image acquisition. In this paper, we present a novel deep network to solve the generic rolling shutter correction problem with two consecutive frames. Our pipeline is symmetrically designed to predict the global shutter image corresponding to the intermediate time of these two frames, which is difficult for existing methods because it corresponds to a camera pose that differs most from the two frames. First, two time-symmetric dense undistortion flows are estimated by using well-established principles: pyramidal construction, warping, and cost volume processing. Then, both rolling shutter images are warped into a common global shutter one in the feature space, respectively. Finally, a symmetric consistency constraint is constructed in the image decoder to effectively aggregate the contextual cues of two rolling shutter images, thereby recovering the high-quality global shutter image. Extensive experiments with both synthetic and real data from public benchmarks demonstrate the superiority of our proposed approach over the state-of-the-art methods.

Box-Aware Feature Enhancement for Single Object Tracking on Point Clouds

發表會議:?ICCV 2021

論文地址: https://arxiv.org/abs/2108.04728

摘要

Current 3D single object tracking approaches track the target based on a feature comparison between the target template and the search area. However, due to the common occlusion in LiDAR scans, it is non-trivial to conduct accurate feature comparisons on severe sparse and incomplete shapes. In this work, we exploit the ground truth bounding box given in the first frame as a strong cue to enhance the feature description of the target object, enabling a more accurate feature comparison in a simple yet effective way. In particular, we first propose the BoxCloud, an informative and robust representation, to depict an object using the point-to-box relation. We further design an efficient box-aware feature fusion module, which leverages the aforementioned BoxCloud for reliable feature matching and embedding. Integrating the proposed general components into an existing model P2B, we construct a superior box-aware tracker (BAT). Experiments confirm that our proposed BAT outperforms the previous state-of-the-art by a large margin on both KITTI and NuScenes benchmarks, achieving a 12.8% improvement in terms of precision while running ~20% faster.

Multi-Camera Trajectory Forecasting with Trajectory Tensors

發表期刊: TPAMI

論文地址:?https://arxiv.org/abs/2108.04694

摘要

We introduce the problem of multi-camera trajectory forecasting (MCTF), which involves predicting the trajectory of a moving object across a network of cameras. While multi-camera setups are widespread for applications such as surveillance and traffic monitoring, existing trajectory forecasting methods typically focus on single-camera trajectory forecasting (SCTF), limiting their use for such applications. Furthermore, using a single camera limits the field-of-view available, making long-term trajectory forecasting impossible. We address these shortcomings of SCTF by developing an MCTF framework that simultaneously uses all estimated relative object locations from several viewpoints and predicts the object's future location in all possible viewpoints. Our framework follows a Which-When-Where approach that predicts in which camera(s) the objects appear and when and where within the camera views they appear. To this end, we propose the concept of trajectory tensors: a new technique to encode trajectories across multiple camera views and the associated uncertainties. We develop several encoder-decoder MCTF models for trajectory tensors and present extensive experiments on our own database (comprising 600 hours of video data from 15 camera views) created particularly for the MCTF task. Results show that our trajectory tensor models outperform coordinate trajectory-based MCTF models and existing SCTF methods adapted for MCTF.?

FoodLogoDet-1500: A Dataset for Large-Scale Food Logo Detection via Multi-Scale Feature Decoupling Network

發表會議: ACM MM 2021

論文地址:?https://arxiv.org/abs/2108.04644

摘要

Food logo detection plays an important role in the multimedia for its wide real-world applications, such as food recommendation of the self-service shop and infringement detection on e-commerce platforms. A large-scale food logo dataset is urgently needed for developing advanced food logo detection algorithms. However, there are no available food logo datasets with food brand information. To support efforts towards food logo detection, we introduce the dataset FoodLogoDet-1500, a new large-scale publicly available food logo dataset, which has 1,500 categories, about 100,000 images and about 150,000 manually annotated food logo objects. We describe the collection and annotation process of FoodLogoDet-1500, analyze its scale and diversity, and compare it with other logo datasets. To the best of our knowledge, FoodLogoDet-1500 is the first largest publicly available high-quality dataset for food logo detection. The challenge of food logo detection lies in the large-scale categories and similarities between food logo categories. For that, we propose a novel food logo detection method Multi-scale Feature Decoupling Network (MFDNet), which decouples classification and regression into two branches and focuses on the classification branch to solve the problem of distinguishing multiple food logo categories. Specifically, we introduce the feature offset module, which utilizes the deformation-learning for optimal classification offset and can effectively obtain the most representative features of classification in detection. In addition, we adopt a balanced feature pyramid in MFDNet, which pays attention to global information, balances the multi-scale feature maps, and enhances feature extraction capability. Comprehensive experiments on FoodLogoDet-1500 and other two benchmark logo datasets demonstrate the effectiveness of the proposed method.?

Learning Canonical 3D Object Representation for Fine-Grained Recognition

發表會議:?ICCV 2021

論文地址:?https://arxiv.org/abs/2108.04628

摘要

We propose a novel framework for fine-grained object recognition that learns to recover object variation in 3D space from a single image, trained on an image collection without using any ground-truth 3D annotation. We accomplish this by representing an object as a composition of 3D shape and its appearance, while eliminating the effect of camera viewpoint, in a canonical configuration. Unlike conventional methods modeling spatial variation in 2D images only, our method is capable of reconfiguring the appearance feature in a canonical 3D space, thus enabling the subsequent object classifier to be invariant under 3D geometric variation. Our representation also allows us to go beyond existing methods, by incorporating 3D shape variation as an additional cue for object recognition. To learn the model without ground-truth 3D annotation, we deploy a differentiable renderer in an analysis-by-synthesis framework. By incorporating 3D shape and appearance jointly in a deep representation, our method learns the discriminative representation of the object and achieves competitive performance on fine-grained image recognition and vehicle re-identification. We also demonstrate that the performance of 3D shape reconstruction is improved by learning fine-grained shape deformation in a boosting manner.

Relation-aware Compositional Zero-shot Learning for Attribute-Object Pair Recognition

發表期刊:?IEEE Transactions on Multimedia

論文地址:?https://arxiv.org/abs/2108.04603

摘要

This paper proposes a novel model for recognizing images with composite attribute-object concepts, notably for composite concepts that are unseen during model training. We aim to explore the three key properties required by the task --- relation-aware, consistent, and decoupled --- to learn rich and robust features for primitive concepts that compose attribute-object pairs. To this end, we propose the Blocked Message Passing Network (BMP-Net). The model consists of two modules. The concept module generates semantically meaningful features for primitive concepts, whereas the visual module extracts visual features for attributes and objects from input images. A message passing mechanism is used in the concept module to capture the relations between primitive concepts. Furthermore, to prevent the model from being biased towards seen composite concepts and reduce the entanglement between attributes and objects, we propose a blocking mechanism that equalizes the information available to the model for both seen and unseen concepts. Extensive experiments and ablation studies on two benchmarks show the efficacy of the proposed model.

Deep Metric Learning for Open World Semantic Segmentation

發表會議: ICCV 2021

論文地址:?https://arxiv.org/abs/2108.04562

摘要

Classical close-set semantic segmentation networks have limited ability to detect out-of-distribution (OOD) objects, which is important for safety-critical applications such as autonomous driving. Incrementally learning these OOD objects with few annotations is an ideal way to enlarge the knowledge base of the deep learning models. In this paper, we propose an open world semantic segmentation system that includes two modules: (1) an open-set semantic segmentation module to detect both in-distribution and OOD objects. (2) an incremental few-shot learning module to gradually incorporate those OOD objects into its existing knowledge base. This open world semantic segmentation system behaves like a human being, which is able to identify OOD objects and gradually learn them with corresponding supervision. We adopt the Deep Metric Learning Network (DMLNet) with contrastive clustering to implement open-set semantic segmentation. Compared to other open-set semantic segmentation methods, our DMLNet achieves state-of-the-art performance on three challenging open-set semantic segmentation datasets without using additional data or generative models. On this basis, two incremental few-shot learning methods are further proposed to progressively improve the DMLNet with the annotations of OOD objects.

Learning Multi-Granular Spatio-Temporal Graph Network for Skeleton-based Action Recognition

發表會議:?ACM MM 2021

論文地址:?https://arxiv.org/abs/2108.04536

摘要

The task of skeleton-based action recognition remains a core challenge in human-centred scene understanding due to the multiple granularities and large variation in human motion. Existing approaches typically employ a single neural representation for different motion patterns, which has difficulty in capturing fine-grained action classes given limited training data. To address the aforementioned problems, we propose a novel multi-granular spatio-temporal graph network for skeleton-based action classification that jointly models the coarse- and fine-grained skeleton motion patterns. To this end, we develop a dual-head graph network consisting of two interleaved branches, which enables us to extract features at two spatio-temporal resolutions in an effective and efficient manner. Moreover, our network utilises a cross-head communication strategy to mutually enhance the representations of both heads. We conducted extensive experiments on three large-scale datasets, namely NTU RGB+D 60, NTU RGB+D 120, and Kinetics-Skeleton, and achieves the state-of-the-art performance on all the benchmarks, which validates the effectiveness of our method.

ASMR: Learning Attribute-Based Person Search with Adaptive Semantic Margin Regularizer

發表會議: ICCV 2021

論文地址: https://arxiv.org/abs/2108.04533

摘要

Attribute-based person search is the task of finding person images that are best matched with a set of text attributes given as query. The main challenge of this task is the large modality gap between attributes and images. To reduce the gap, we present a new loss for learning cross-modal embeddings in the context of attribute-based person search. We regard a set of attributes as a category of people sharing the same traits. In a joint embedding space of the two modalities, our loss pulls images close to their person categories for modality alignment. More importantly, it pushes apart a pair of person categories by a margin determined adaptively by their semantic distance, where the distance metric is learned end-to-end so that the loss considers importance of each attribute when relating person categories. Our loss guided by the adaptive semantic margin leads to more discriminative and semantically well-arranged distributions of person images. As a consequence, it enables a simple embedding model to achieve state-of-the-art records on public benchmarks without bells and whistles.

SP-GAN: Sphere-Guided 3D Shape Generation and Manipulation

發表會議:??SIGGRAPH 2021

論文地址:?https://arxiv.org/abs/2108.04476

摘要

We present SP-GAN, a new unsupervised sphere-guided generative model for direct synthesis of 3D shapes in the form of point clouds. Compared with existing models, SP-GAN is able to synthesize diverse and high-quality shapes with fine details and promote controllability for part-aware shape generation and manipulation, yet trainable without any parts annotations. In SP-GAN, we incorporate a global prior (uniform points on a sphere) to spatially guide the generative process and attach a local prior (a random latent code) to each sphere point to provide local details. The key insight in our design is to disentangle the complex 3D shape generation task into a global shape modeling and a local structure adjustment, to ease the learning process and enhance the shape generation quality. Also, our model forms an implicit dense correspondence between the sphere points and points in every generated shape, enabling various forms of structure-aware shape manipulations such as part editing, part-wise shape interpolation, and multi-shape part composition, etc., beyond the existing generative models. Experimental results, which include both visual and quantitative evaluations, demonstrate that our model is able to synthesize diverse point clouds with fine details and less noise, as compared with the state-of-the-art models.

Reference-based Defect Detection Network

發表期刊: IEEE Transactions on Image Processing

論文地址:?https://arxiv.org/abs/2108.04456

摘要

The defect detection task can be regarded as a realistic scenario of object detection in the computer vision field and it is widely used in the industrial field. Directly applying vanilla object detector to defect detection task can achieve promising results, while there still exists challenging issues that have not been solved. The first issue is the texture shift which means a trained defect detector model will be easily affected by unseen texture, and the second issue is partial visual confusion which indicates that a partial defect box is visually similar with a complete box. To tackle these two problems, we propose a Reference-based Defect Detection Network (RDDN). Specifically, we introduce template reference and context reference to against those two problems, respectively. Template reference can reduce the texture shift from image, feature or region levels, and encourage the detectors to focus more on the defective area as a result. We can use either well-aligned template images or the outputs of a pseudo template generator as template references in this work, and they are jointly trained with detectors by the supervision of normal samples. To solve the partial visual confusion issue, we propose to leverage the carried context information of context reference, which is the concentric bigger box of each region proposal, to perform more accurate region classification and regression. Experiments on two defect detection datasets demonstrate the effectiveness of our proposed approach.

SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer

發表會議:?ICCV 2021

論文地址:?https://arxiv.org/abs/2108.04444

摘要

Point cloud completion aims to predict a complete shape in high accuracy from its partial observation. However, previous methods usually suffered from discrete nature of point cloud and unstructured prediction of points in local regions, which makes it hard to reveal fine local geometric details on the complete shape. To resolve this issue, we propose SnowflakeNet with Snowflake Point Deconvolution (SPD) to generate the complete point clouds. The SnowflakeNet models the generation of complete point clouds as the snowflake-like growth of points in 3D space, where the child points are progressively generated by splitting their parent points after each SPD. Our insight of revealing detailed geometry is to introduce skip-transformer in SPD to learn point splitting patterns which can fit local regions the best. Skip-transformer leverages attention mechanism to summarize the splitting patterns used in the previous SPD layer to produce the splitting in the current SPD layer. The locally compact and structured point cloud generated by SPD is able to precisely capture the structure characteristic of 3D shape in local patches, which enables the network to predict highly detailed geometries, such as smooth regions, sharp edges and corners. Our experimental results outperform the state-of-the-art point cloud completion methods under widely used benchmarks.

Domain-Aware Universal Style Transfer

發表會議:?ICCV 2021

論文地址:?https://arxiv.org/abs/2108.04441

摘要

Style transfer aims to reproduce content images with the styles from reference images. Existing universal style transfer methods successfully deliver arbitrary styles to original images either in an artistic or a photo-realistic way. However, the range of 'arbitrary style' defined by existing works is bounded in the particular domain due to their structural limitation. Specifically, the degrees of content preservation and stylization are established according to a predefined target domain. As a result, both photo-realistic and artistic models have difficulty in performing the desired style transfer for the other domain. To overcome this limitation, we propose a unified architecture, Domain-aware Style Transfer Networks (DSTN) that transfer not only the style but also the property of domain (i.e., domainness) from a given reference image. To this end, we design a novel domainness indicator that captures the domainness value from the texture and structural features of reference images. Moreover, we introduce a unified framework with domain-aware skip connection to adaptively transfer the stroke and palette to the input contents guided by the domainness indicator. Our extensive experiments validate that our model produces better qualitative results and outperforms previous methods in terms of proxy metrics on both artistic and photo-realistic stylizations.

VirtualConductor: Music-driven Conducting Video Generation System

發表會議:?ICME 2021

論文地址:?https://arxiv.org/abs/2108.04350

摘要

In this demo, we present VirtualConductor, a system that can generate conducting video from any given music and a single user's image. First, a large-scale conductor motion dataset is collected and constructed. Then, we propose Audio Motion Correspondence Network (AMCNet) and adversarial-perceptual learning to learn the cross-modal relationship and generate diverse, plausible, music-synchronized motion. Finally, we combine 3D animation rendering and a pose transfer model to synthesize conducting video from a single given user's image. Therefore, any user can become a virtual conductor through the system.

A Survey of Machine Learning Techniques for Detecting and Diagnosing COVID-19 from Imaging

論文地址:?https://arxiv.org/abs/2108.04344

摘要

Due to the limited availability and high cost of the reverse transcription-polymerase chain reaction (RT-PCR) test, many studies have proposed machine learning techniques for detecting COVID-19 from medical imaging. The purpose of this study is to systematically review, assess, and synthesize research articles that have used different machine learning techniques to detect and diagnose COVID-19 from chest X-ray and CT scan images. A structured literature search was conducted in the relevant bibliographic databases to ensure that the survey solely centered on reproducible and high-quality research. We selected papers based on our inclusion criteria. In this survey, we reviewed?98?articles that fulfilled our inclusion criteria. We have surveyed a complete pipeline of chest imaging analysis techniques related to COVID-19, including data collection, pre-processing, feature extraction, classification, and visualization. We have considered CT scans and X-rays as both are widely used to describe the latest developments in medical imaging to detect COVID-19. This survey provides researchers with valuable insights into different machine learning techniques and their performance in the detection and diagnosis of COVID-19 from chest imaging. At the end, the challenges and limitations in detecting COVID-19 using machine learning techniques and the future direction of research are discussed.

Learning to Cut by Watching Movies

發表會議: ICCV 2021

論文地址:?https://arxiv.org/abs/2108.04294

摘要

Video content creation keeps growing at an incredible pace; yet, creating engaging stories remains challenging and requires non-trivial video editing expertise. Many video editing components are astonishingly hard to automate primarily due to the lack of raw video materials. This paper focuses on a new task for computational video editing, namely the task of raking cut plausibility. Our key idea is to leverage content that has already been edited to learn fine-grained audiovisual patterns that trigger cuts. To do this, we first collected a data source of more than 10K videos, from which we extract more than 255K cuts. We devise a model that learns to discriminate between real and artificial cuts via contrastive learning. We set up a new task and a set of baselines to benchmark video cut generation. We observe that our proposed model outperforms the baselines by large margins. To demonstrate our model in real-world applications, we conduct human studies in a collection of unedited videos. The results show that our model does a better job at cutting than random and alternative baselines.

TrUMAn: Trope Understanding in Movies and Animations

發表會議:?CIKM? 2021

論文地址:?https://arxiv.org/abs/2108.04542

摘要

Understanding and comprehending video content is crucial for many real-world applications such as search and recommendation systems. While recent progress of deep learning has boosted performance on various tasks using visual cues, deep cognition to reason intentions, motivation, or causality remains challenging. Existing datasets that aim to examine video reasoning capability focus on visual signals such as actions, objects, relations, or could be answered utilizing text bias. Observing this, we propose a novel task, along with a new dataset: Trope Understanding in Movies and Animations (TrUMAn), intending to evaluate and develop learning systems beyond visual signals. Tropes are frequently used storytelling devices for creative works. By coping with the trope understanding task and enabling the deep cognition skills of machines, we are optimistic that data mining applications and algorithms could be taken to the next level. To tackle the challenging TrUMAn dataset, we present a Trope Understanding and Storytelling (TrUSt) with a new Conceptual Storyteller module, which guides the video encoder by performing video storytelling on a latent space. The generated story embedding is then fed into the trope understanding model to provide further signals. Experimental results demonstrate that state-of-the-art learning systems on existing tasks reach only 12.01% of accuracy with raw input signals. Also, even in the oracle case with human-annotated descriptions, BERT contextual embedding achieves at most 28% of accuracy. Our proposed TrUSt boosts the model performance and reaches 13.94% performance. We also provide detailed analysis topave the way for future research. TrUMAn is publicly available at:this https URL

Rethinking Architecture Selection in Differentiable NAS

發表會議:?Outstanding Paper Award at ICLR 2021

論文地址:?https://arxiv.org/abs/2108.04392

代碼地址:?https://github.com/ruocwang/darts-pt

摘要

Differentiable Neural Architecture Search is one of the most popular Neural Architecture Search (NAS) methods for its search efficiency and simplicity, accomplished by jointly optimizing the model weight and architecture parameters in a weight-sharing supernet via gradient-based algorithms. At the end of the search phase, the operations with the largest architecture parameters will be selected to form the final architecture, with the implicit assumption that the values of architecture parameters reflect the operation strength. While much has been discussed about the supernet's optimization, the architecture selection process has received little attention. We provide empirical and theoretical analysis to show that the magnitude of architecture parameters does not necessarily indicate how much the operation contributes to the supernet's performance. We propose an alternative perturbation-based architecture selection that directly measures each operation's influence on the supernet. We re-evaluate several differentiable NAS methods with the proposed architecture selection and find that it is able to extract significantly improved architectures from the underlying supernets consistently. Furthermore, we find that several failure modes of DARTS can be greatly alleviated with the proposed selection method, indicating that much of the poor generalization observed in DARTS can be attributed to the failure of magnitude-based architecture selection rather than entirely the optimization of its supernet.

Label-informed Graph Structure Learning for Node Classification

發表會議:?CIKM?2021 short paper

論文地址:?https://arxiv.org/abs/2108.04595

摘要

Graph Neural Networks (GNNs) have achieved great success among various domains. Nevertheless, most GNN methods are sensitive to the quality of graph structures. To tackle this problem, some studies exploit different graph structure learning strategies to refine the original graph structure. However, these methods only consider feature information while ignoring available label information. In this paper, we propose a novel label-informed graph structure learning framework which incorporates label information explicitly through a class transition matrix. We conduct extensive experiments on seven node classification benchmark datasets and the results show that our method outperforms or matches the state-of-the-art baselines.

A Survey on Deep Reinforcement Learning for Data Processing and Analytics

論文地址:?https://arxiv.org/abs/2108.04526

摘要

Data processing and analytics are fundamental and pervasive. Algorithms play a vital role in data processing and analytics where many algorithm designs have incorporated heuristics and general rules from human knowledge and experience to improve their effectiveness. Recently, reinforcement learning, deep reinforcement learning (DRL) in particular, is increasingly explored and exploited in many areas because it can learn better strategies in complicated environments it is interacting with than statically designed algorithms. Motivated by this trend, we provide a comprehensive review of recent works focusing on utilizing deep reinforcement learning to improve data processing and analytics. First, we present an introduction to key concepts, theories, and methods in deep reinforcement learning. Next, we discuss deep reinforcement learning deployment on database systems, facilitating data processing and analytics in various aspects, including data organization, scheduling, tuning, and indexing. Then, we survey the application of deep reinforcement learning in data processing and analytics, ranging from data preparation, natural language interface to healthcare, fintech, etc. Finally, we discuss important open challenges and future research directions of using deep reinforcement learning in data processing and analytics.

AdaRNN: Adaptive Learning and Forecasting of Time Series

發表會議:CIKM 2021

論文地址:https://arxiv.org/abs/2108.04443

代碼地址:?

https://github.com/jindongwang/transferlearning/tree/master/code/deep/adarnn

摘要

Time series has wide applications in the real world and is known to be difficult to forecast. Since its statistical properties change over time, its distribution also changes temporally, which will cause severe distribution shift problem to existing methods. However, it remains unexplored to model the time series in the distribution perspective. In this paper, we term this as Temporal Covariate Shift (TCS). This paper proposes Adaptive RNNs (AdaRNN) to tackle the TCS problem by building an adaptive model that generalizes well on the unseen test data. AdaRNN is sequentially composed of two novel algorithms. First, we propose Temporal Distribution Characterization to better characterize the distribution information in the TS. Second, we propose Temporal Distribution Matching to reduce the distribution mismatch in TS to learn the adaptive TS model. AdaRNN is a general framework with flexible distribution distances integrated. Experiments on human activity recognition, air quality prediction, and financial analysis show that AdaRNN outperforms the latest methods by a classification accuracy of 2.6% and significantly reduces the RMSE by 9.0%. We also show that the temporal distribution matching algorithm can be extended in Transformer structure to boost its performance.

Continual Learning for Grounded Instruction Generation by Observing Human Following Behavior

發表期刊: TACL

論文地址:?https://arxiv.org/abs/2108.04812

摘要

We study continual learning for natural language instruction generation, by observing human users' instruction execution. We focus on a collaborative scenario, where the system both acts and delegates tasks to human users using natural language. We compare user execution of generated instructions to the original system intent as an indication to the system's success communicating its intent. We show how to use this signal to improve the system's ability to generate instructions via contextual bandit learning. In interaction with real users, our system demonstrates dramatic improvements in its ability to generate language over time.

Multi-Factors Aware Dual-Attentional Knowledge Tracing

發表會議: CIKM 2021

論文地址:?https://arxiv.org/abs/2108.04741

摘要

With the increasing demands of personalized learning, knowledge tracing has become important which traces students' knowledge states based on their historical practices. Factor analysis methods mainly use two kinds of factors which are separately related to students and questions to model students' knowledge states. These methods use the total number of attempts of students to model students' learning progress and hardly highlight the impact of the most recent relevant practices. Besides, current factor analysis methods ignore rich information contained in questions. In this paper, we propose Multi-Factors Aware Dual-Attentional model (MF-DAKT) which enriches question representations and utilizes multiple factors to model students' learning progress based on a dual-attentional mechanism. More specifically, we propose a novel student-related factor which records the most recent attempts on relevant concepts of students to highlight the impact of recent exercises. To enrich questions representations, we use a pre-training method to incorporate two kinds of question information including questions' relation and difficulty level. We also add a regularization term about questions' difficulty level to restrict pre-trained question representations to fine-tuning during the process of predicting students' performance. Moreover, we apply a dual-attentional mechanism to differentiate contributions of factors and factor interactions to final prediction in different practice records. At last, we conduct experiments on several real-world datasets and results show that MF-DAKT can outperform existing knowledge tracing methods. We also conduct several studies to validate the effects of each component of MF-DAKT.

Hierarchical Latent Relation Modeling for Collaborative Metric Learning

發表會議:??ACM RecSys 2021

論文地址:?https://arxiv.org/abs/2108.04655

摘要

Collaborative Metric Learning (CML) recently emerged as a powerful paradigm for recommendation based on implicit feedback collaborative filtering. However, standard CML methods learn fixed user and item representations, which fails to capture the complex interests of users. Existing extensions of CML also either ignore the heterogeneity of user-item relations, i.e. that a user can simultaneously like very different items, or the latent item-item relations, i.e. that a user's preference for an item depends, not only on its intrinsic characteristics, but also on items they previously interacted with. In this paper, we present a hierarchical CML model that jointly captures latent user-item and item-item relations from implicit data. Our approach is inspired by translation mechanisms from knowledge graph embedding and leverages memory-based attention networks. We empirically show the relevance of this joint relational modeling, by outperforming existing CML models on recommendation tasks on several real-world datasets. Our experiments also emphasize the limits of current CML relational models on very sparse datasets.

Learning Multi-Granular Spatio-Temporal Graph Network for Skeleton-based Action Recognition

發表會議:??ACM MM 2021

論文地址:?https://arxiv.org/abs/2108.04536

摘要

The task of skeleton-based action recognition remains a core challenge in human-centred scene understanding due to the multiple granularities and large variation in human motion. Existing approaches typically employ a single neural representation for different motion patterns, which has difficulty in capturing fine-grained action classes given limited training data. To address the aforementioned problems, we propose a novel multi-granular spatio-temporal graph network for skeleton-based action classification that jointly models the coarse- and fine-grained skeleton motion patterns. To this end, we develop a dual-head graph network consisting of two interleaved branches, which enables us to extract features at two spatio-temporal resolutions in an effective and efficient manner. Moreover, our network utilises a cross-head communication strategy to mutually enhance the representations of both heads. We conducted extensive experiments on three large-scale datasets, namely NTU RGB+D 60, NTU RGB+D 120, and Kinetics-Skeleton, and achieves the state-of-the-art performance on all the benchmarks, which validates the effectiveness of our method.

Enhancing Knowledge Tracing via Adversarial Training

發表會議:?ACM MM 2021

論文地址:?https://arxiv.org/abs/2108.04430

摘要

We study the problem of knowledge tracing (KT) where the goal is to trace the students' knowledge mastery over time so as to make predictions on their future performance. Owing to the good representation capacity of deep neural networks (DNNs), recent advances on KT have increasingly concentrated on exploring DNNs to improve the performance of KT. However, we empirically reveal that the DNNs based KT models may run the risk of overfitting, especially on small datasets, leading to limited generalization. In this paper, by leveraging the current advances in adversarial training (AT), we propose an efficient AT based KT method (ATKT) to enhance KT model's generalization and thus push the limit of KT. Specifically, we first construct adversarial perturbations and add them on the original interaction embeddings as adversarial examples. The original and adversarial examples are further used to jointly train the KT model, forcing it is not only to be robust to the adversarial examples, but also to enhance the generalization over the original ones. To better implement AT, we then present an efficient attentive-LSTM model as KT backbone, where the key is a proposed knowledge hidden state attention module that adaptively aggregates information from previous knowledge hidden states while simultaneously highlighting the importance of current knowledge hidden state to make a more accurate prediction. Extensive experiments on four public benchmark datasets demonstrate that our ATKT achieves new state-of-the-art performance. Code is available at: \color{blue} {\url{this https URL}}.

How Commonsense Knowledge Helps with Natural Language Tasks: A Survey of Recent Resources and Methodologies

論文地址: https://arxiv.org/abs/2108.04674

摘要

In this paper, we give an overview of commonsense reasoning in natural language processing, which requires a deeper understanding of the contexts and usually involves inference over implicit external knowledge. We first review some popular commonsense knowledge bases and commonsense reasoning benchmarks, but give more emphasis on the methodologies, including recent approaches that aim at solving some general natural language problems that take advantage of external knowledge bases. Finally, we discuss some future directions in pushing the boundary of commonsense reasoning in natural language processing.

FairyTailor: A Multimodal Generative Framework for Storytelling

論文地址:?https://arxiv.org/abs/2108.04324

項目地址: https://github.com/EdenBD/MultiModalStory-demo

演示地址:?https://fairytailor.org/

摘要

Storytelling is an open-ended task that entails creative thinking and requires a constant flow of ideas. Natural language generation (NLG) for storytelling is especially challenging because it requires the generated text to follow an overall theme while remaining creative and diverse to engage the reader. In this work, we introduce a system and a web-based demo, FairyTailor, for human-in-the-loop visual story co-creation. Users can create a cohesive children's fairytale by weaving generated texts and retrieved images with their input. FairyTailor adds another modality and modifies the text generation process to produce a coherent and creative sequence of text and images. To our knowledge, this is the first dynamic tool for multimodal story generation that allows interactive co-formation of both texts and images. It allows users to give feedback on co-created stories and share their results.

·

總結

以上是生活随笔為你收集整理的今日arXiv精选 | ICCV 2021/CIKM 2021/ACM MM 2021的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

日本免费一区二区三区最新 | 久久www免费人成人片 | 久在线观看福利视频 | 无人区乱码一区二区三区 | 亚洲国产欧美国产综合一区 | 国产 精品 自在自线 | 97精品国产97久久久久久免费 | 夫妻免费无码v看片 | 美女极度色诱视频国产 | 免费人成网站视频在线观看 | 国产无套内射久久久国产 | 成人精品一区二区三区中文字幕 | 国产亚洲日韩欧美另类第八页 | 国产乱码精品一品二品 | 国内少妇偷人精品视频 | 蜜桃视频韩日免费播放 | 精品厕所偷拍各类美女tp嘘嘘 | 中文字幕亚洲情99在线 | 精品一区二区三区波多野结衣 | 亚洲理论电影在线观看 | 国产亚洲人成a在线v网站 | 日日碰狠狠躁久久躁蜜桃 | 中文字幕人妻丝袜二区 | 牲欲强的熟妇农村老妇女视频 | 老子影院午夜伦不卡 | 牲交欧美兽交欧美 | 亚洲成色在线综合网站 | 又大又硬又爽免费视频 | 国产精品手机免费 | 国产又爽又猛又粗的视频a片 | 中文字幕精品av一区二区五区 | 中文字幕 亚洲精品 第1页 | 又粗又大又硬毛片免费看 | 久久无码中文字幕免费影院蜜桃 | 麻豆国产97在线 | 欧洲 | 欧美日本精品一区二区三区 | 人妻夜夜爽天天爽三区 | 1000部啪啪未满十八勿入下载 | 久9re热视频这里只有精品 | 狠狠色噜噜狠狠狠7777奇米 | 理论片87福利理论电影 | 欧美日韩一区二区综合 | 国产美女极度色诱视频www | 国产精品-区区久久久狼 | 午夜熟女插插xx免费视频 | 蜜臀av在线播放 久久综合激激的五月天 | 人妻与老人中文字幕 | 国产高清av在线播放 | 亚洲精品中文字幕乱码 | 精品日本一区二区三区在线观看 | 成人免费无码大片a毛片 | 美女毛片一区二区三区四区 | 亲嘴扒胸摸屁股激烈网站 | 青草青草久热国产精品 | 亚洲精品国偷拍自产在线麻豆 | 亚洲一区二区观看播放 | 人人妻人人澡人人爽人人精品 | 久久久无码中文字幕久... | aⅴ亚洲 日韩 色 图网站 播放 | 丰满人妻被黑人猛烈进入 | 熟女体下毛毛黑森林 | 免费国产成人高清在线观看网站 | 蜜臀av无码人妻精品 | 亚洲爆乳无码专区 | 最近中文2019字幕第二页 | 成人aaa片一区国产精品 | 亚洲精品综合一区二区三区在线 | 亚洲另类伦春色综合小说 | 亚洲综合伊人久久大杳蕉 | 夜夜躁日日躁狠狠久久av | 国产精品香蕉在线观看 | 久久久国产一区二区三区 | 亚洲呦女专区 | 中文字幕无线码免费人妻 | 熟妇激情内射com | 兔费看少妇性l交大片免费 | 无码免费一区二区三区 | 人妻aⅴ无码一区二区三区 | 色诱久久久久综合网ywww | av在线亚洲欧洲日产一区二区 | 亚洲国产欧美日韩精品一区二区三区 | 亚洲男人av香蕉爽爽爽爽 | 精品国产一区二区三区av 性色 | 欧美丰满熟妇xxxx性ppx人交 | 99久久人妻精品免费二区 | 中文字幕无码视频专区 | 一二三四在线观看免费视频 | 久久天天躁狠狠躁夜夜免费观看 | 真人与拘做受免费视频一 | 无遮挡国产高潮视频免费观看 | av人摸人人人澡人人超碰下载 | 久久久久成人片免费观看蜜芽 | 色偷偷人人澡人人爽人人模 | 久久 国产 尿 小便 嘘嘘 | 欧美亚洲日韩国产人成在线播放 | 美女黄网站人色视频免费国产 | 性欧美熟妇videofreesex | 亚洲一区av无码专区在线观看 | 日本丰满护士爆乳xxxx | 日日噜噜噜噜夜夜爽亚洲精品 | 久久 国产 尿 小便 嘘嘘 | 精品成在人线av无码免费看 | 亚洲成在人网站无码天堂 | 国产激情精品一区二区三区 | 久久人妻内射无码一区三区 | 亚洲 另类 在线 欧美 制服 | 亚洲一区二区三区四区 | 亚洲日韩av一区二区三区中文 | 岛国片人妻三上悠亚 | 国产成人无码区免费内射一片色欲 | 国产香蕉尹人视频在线 | 国产成人综合在线女婷五月99播放 | 秋霞特色aa大片 | 人妻少妇精品无码专区二区 | 精品无人国产偷自产在线 | 亚洲一区二区三区播放 | 白嫩日本少妇做爰 | 中文字幕日韩精品一区二区三区 | 骚片av蜜桃精品一区 | 精品久久久久久亚洲精品 | 亚洲国产精品美女久久久久 | 性欧美大战久久久久久久 | 免费看男女做好爽好硬视频 | 97久久精品无码一区二区 | 亚洲精品中文字幕久久久久 | 久久午夜夜伦鲁鲁片无码免费 | 亚洲欧美综合区丁香五月小说 | 成人精品视频一区二区三区尤物 | 超碰97人人射妻 | 欧美 亚洲 国产 另类 | 18禁黄网站男男禁片免费观看 | aa片在线观看视频在线播放 | 99久久精品日本一区二区免费 | 久久天天躁狠狠躁夜夜免费观看 | 青青草原综合久久大伊人精品 | 亚洲成色在线综合网站 | 久久久成人毛片无码 | yw尤物av无码国产在线观看 | 午夜精品一区二区三区在线观看 | 夜先锋av资源网站 | 欧美黑人性暴力猛交喷水 | 亚洲伊人久久精品影院 | 久久亚洲精品中文字幕无男同 | 丰满人妻精品国产99aⅴ | 噜噜噜亚洲色成人网站 | 桃花色综合影院 | 97人妻精品一区二区三区 | 成人欧美一区二区三区黑人免费 | 国产精品igao视频网 | 色欲av亚洲一区无码少妇 | 亚洲s色大片在线观看 | 久久天天躁狠狠躁夜夜免费观看 | 天天av天天av天天透 | 免费看少妇作爱视频 | 国产av无码专区亚洲a∨毛片 | 999久久久国产精品消防器材 | 国产凸凹视频一区二区 | 亚洲日本在线电影 | 久久久久久亚洲精品a片成人 | 九月婷婷人人澡人人添人人爽 | 欧美猛少妇色xxxxx | 精品国产一区二区三区四区 | 亚洲日韩精品欧美一区二区 | 中文字幕无码av激情不卡 | 亚洲乱码中文字幕在线 | 欧美熟妇另类久久久久久多毛 | 午夜精品久久久久久久久 | 乌克兰少妇性做爰 | 中文字幕av无码一区二区三区电影 | 日本在线高清不卡免费播放 | 精品国产精品久久一区免费式 | 国产又粗又硬又大爽黄老大爷视 | 欧美黑人乱大交 | 少妇被粗大的猛进出69影院 | 国产成人无码av片在线观看不卡 | 色综合久久88色综合天天 | 九九综合va免费看 | 欧美zoozzooz性欧美 | 日本又色又爽又黄的a片18禁 | aa片在线观看视频在线播放 | 亚洲性无码av中文字幕 | 日韩视频 中文字幕 视频一区 | 天天av天天av天天透 | 色妞www精品免费视频 | 伊人久久婷婷五月综合97色 | 国产午夜无码精品免费看 | 久久精品一区二区三区四区 | 亚洲精品一区二区三区四区五区 | 无码中文字幕色专区 | 麻豆蜜桃av蜜臀av色欲av | 大色综合色综合网站 | 欧美熟妇另类久久久久久不卡 | 一本加勒比波多野结衣 | 中文字幕人成乱码熟女app | 国产熟女一区二区三区四区五区 | 久久久久99精品成人片 | 亚洲中文字幕无码中字 | 97se亚洲精品一区 | 亚洲无人区午夜福利码高清完整版 | 无码国模国产在线观看 | 亚洲精品一区二区三区在线观看 | 久久久久人妻一区精品色欧美 | 国产精品久久久久久亚洲毛片 | 天下第一社区视频www日本 | 熟妇人妻无码xxx视频 | 少妇太爽了在线观看 | 精品aⅴ一区二区三区 | 亚洲va欧美va天堂v国产综合 | 大肉大捧一进一出视频出来呀 | 免费看少妇作爱视频 | 日本熟妇乱子伦xxxx | 欧美性猛交xxxx富婆 | 欧美性色19p | 内射老妇bbwx0c0ck | 国产亚洲精品久久久闺蜜 | 中文无码成人免费视频在线观看 | 久久国产精品二国产精品 | 国内精品一区二区三区不卡 | 1000部啪啪未满十八勿入下载 | 欧美成人家庭影院 | 一本大道伊人av久久综合 | 中文字幕无码人妻少妇免费 | 99精品国产综合久久久久五月天 | 国产精品久久久久7777 | 久久精品人妻少妇一区二区三区 | 人人爽人人澡人人人妻 | 国产精品亚洲五月天高清 | 婷婷五月综合缴情在线视频 | 欧美一区二区三区视频在线观看 | 亚洲综合无码一区二区三区 | 色老头在线一区二区三区 | 无码av岛国片在线播放 | 国产精品二区一区二区aⅴ污介绍 | 麻豆国产人妻欲求不满谁演的 | 三级4级全黄60分钟 | 中文字幕无码免费久久9一区9 | 国产农村妇女aaaaa视频 撕开奶罩揉吮奶头视频 | 对白脏话肉麻粗话av | 欧美成人免费全部网站 | 大地资源网第二页免费观看 | 欧洲精品码一区二区三区免费看 | 久久亚洲精品中文字幕无男同 | 欧美35页视频在线观看 | 久久久精品人妻久久影视 | 亚洲日本va午夜在线电影 | 久久精品国产日本波多野结衣 | 99国产精品白浆在线观看免费 | 少妇性俱乐部纵欲狂欢电影 | 娇妻被黑人粗大高潮白浆 | 丝袜 中出 制服 人妻 美腿 | 国产精品沙发午睡系列 | 大乳丰满人妻中文字幕日本 | 麻豆人妻少妇精品无码专区 | 成人性做爰aaa片免费看不忠 | 日本精品高清一区二区 | 成 人 网 站国产免费观看 | 强伦人妻一区二区三区视频18 | 波多野结衣高清一区二区三区 | 一个人看的www免费视频在线观看 | √天堂资源地址中文在线 | 亚洲国产精品久久久久久 | 国内少妇偷人精品视频 | 日本爽爽爽爽爽爽在线观看免 | 日韩人妻少妇一区二区三区 | 亚洲人成无码网www | a片在线免费观看 | 麻豆av传媒蜜桃天美传媒 | a国产一区二区免费入口 | 免费国产黄网站在线观看 | 国产亚洲精品久久久久久 | 亚洲色无码一区二区三区 | aⅴ亚洲 日韩 色 图网站 播放 | 强辱丰满人妻hd中文字幕 | 色一情一乱一伦 | 噜噜噜亚洲色成人网站 | 国产精品99爱免费视频 | 午夜无码区在线观看 | 无码成人精品区在线观看 | 夜夜高潮次次欢爽av女 | 国产免费无码一区二区视频 | 亚洲国产成人a精品不卡在线 | 国产精品99爱免费视频 | 亚洲精品久久久久中文第一幕 | 国产一精品一av一免费 | 久久精品丝袜高跟鞋 | 亚洲中文字幕va福利 | 亚洲欧美中文字幕5发布 | 久久无码中文字幕免费影院蜜桃 | 亚洲s码欧洲m码国产av | 国产99久久精品一区二区 | 亚洲人亚洲人成电影网站色 | 又紧又大又爽精品一区二区 | 国产免费久久精品国产传媒 | 无码人妻av免费一区二区三区 | 色偷偷av老熟女 久久精品人妻少妇一区二区三区 | 亚洲综合另类小说色区 | 超碰97人人做人人爱少妇 | 久久久久se色偷偷亚洲精品av | 久久人妻内射无码一区三区 | 亚洲国产一区二区三区在线观看 | 国产成人精品久久亚洲高清不卡 | 午夜肉伦伦影院 | 桃花色综合影院 | 久久人人爽人人爽人人片av高清 | 日韩av无码中文无码电影 | 久久亚洲中文字幕精品一区 | 国产精品久久久久久久影院 | 国产真人无遮挡作爱免费视频 | 日韩亚洲欧美中文高清在线 | 日韩在线不卡免费视频一区 | 久久精品人人做人人综合试看 | 国产精品99爱免费视频 | 1000部夫妻午夜免费 | 97色伦图片97综合影院 | 双乳奶水饱满少妇呻吟 | 美女毛片一区二区三区四区 | a国产一区二区免费入口 | 精品无码国产自产拍在线观看蜜 | 亚洲国产av美女网站 | 欧美日本免费一区二区三区 | 国产精品久久久久影院嫩草 | 欧美日本免费一区二区三区 | 欧美日韩综合一区二区三区 | 老司机亚洲精品影院无码 | 真人与拘做受免费视频一 | 伊人久久大香线蕉亚洲 | 狂野欧美性猛交免费视频 | 国产网红无码精品视频 | 亚洲色欲色欲欲www在线 | 少妇无码av无码专区在线观看 | 亚洲の无码国产の无码影院 | 成在人线av无码免观看麻豆 | 亚洲综合在线一区二区三区 | av无码久久久久不卡免费网站 | 红桃av一区二区三区在线无码av | 成人毛片一区二区 | 国产疯狂伦交大片 | 男人的天堂av网站 | 日本一卡2卡3卡4卡无卡免费网站 国产一区二区三区影院 | 国产精品美女久久久 | 无遮挡啪啪摇乳动态图 | 丰满人妻一区二区三区免费视频 | 亚洲日韩乱码中文无码蜜桃臀网站 | 国产精品无套呻吟在线 | 国产凸凹视频一区二区 | 国产真实伦对白全集 | 日本va欧美va欧美va精品 | 成人片黄网站色大片免费观看 | 红桃av一区二区三区在线无码av | 精品久久久中文字幕人妻 | 色综合久久久无码中文字幕 | 18精品久久久无码午夜福利 | 国内老熟妇对白xxxxhd | 亚洲熟妇色xxxxx欧美老妇y | 国产三级精品三级男人的天堂 | 永久免费观看美女裸体的网站 | 国产色视频一区二区三区 | 国产日产欧产精品精品app | 国产欧美精品一区二区三区 | 装睡被陌生人摸出水好爽 | 欧美三级a做爰在线观看 | 国产亚洲精品久久久ai换 | 国产高清不卡无码视频 | 成人免费无码大片a毛片 | 秋霞成人午夜鲁丝一区二区三区 | 国产片av国语在线观看 | 亚洲国产精品无码一区二区三区 | 久久精品中文字幕一区 | 日日噜噜噜噜夜夜爽亚洲精品 | 日韩欧美成人免费观看 | 久久精品人妻少妇一区二区三区 | 久久人人爽人人爽人人片ⅴ | 亚洲精品中文字幕 | 欧美精品在线观看 | 麻豆国产人妻欲求不满谁演的 | 国产特级毛片aaaaaa高潮流水 | 亚洲精品无码人妻无码 | 少妇高潮一区二区三区99 | 大肉大捧一进一出视频出来呀 | 欧美变态另类xxxx | 扒开双腿疯狂进出爽爽爽视频 | 少妇无码av无码专区在线观看 | 水蜜桃亚洲一二三四在线 | 高中生自慰www网站 | 国产精品亚洲lv粉色 | 美女毛片一区二区三区四区 | 亚洲爆乳无码专区 | 一区二区三区乱码在线 | 欧洲 | 又大又紧又粉嫩18p少妇 | 牲欲强的熟妇农村老妇女视频 | 亚洲欧美精品伊人久久 | 精品无码av一区二区三区 | 老子影院午夜精品无码 | 亚洲中文字幕无码中字 | 人人澡人人妻人人爽人人蜜桃 | 亚洲欧美日韩成人高清在线一区 | 激情爆乳一区二区三区 | 欧美日韩亚洲国产精品 | 日本www一道久久久免费榴莲 | 成人试看120秒体验区 | 欧美三级不卡在线观看 | 性生交片免费无码看人 | 色婷婷欧美在线播放内射 | 中文字幕+乱码+中文字幕一区 | 极品尤物被啪到呻吟喷水 | а√资源新版在线天堂 | 久久无码中文字幕免费影院蜜桃 | 国产电影无码午夜在线播放 | 97se亚洲精品一区 | 无码人妻丰满熟妇区毛片18 | 无遮无挡爽爽免费视频 | 日本一区二区三区免费高清 | 国产九九九九九九九a片 | 亚洲欧美国产精品专区久久 | 国产精品人人妻人人爽 | 亚洲国产综合无码一区 | 无遮挡国产高潮视频免费观看 | 露脸叫床粗话东北少妇 | 天天做天天爱天天爽综合网 | 国产精品久久久av久久久 | 精品久久久久久亚洲精品 | 精品国产成人一区二区三区 | 国产无av码在线观看 | 国产精品久久久午夜夜伦鲁鲁 | 国产成人无码a区在线观看视频app | 国产成人精品视频ⅴa片软件竹菊 | 熟女俱乐部五十路六十路av | 成人片黄网站色大片免费观看 | 日日天日日夜日日摸 | 国产成人精品优优av | 极品嫩模高潮叫床 | 九九热爱视频精品 | 国产在线aaa片一区二区99 | 国产午夜手机精彩视频 | 国产成人无码一二三区视频 | 免费乱码人妻系列无码专区 | 亚洲中文字幕无码一久久区 | 国产成人无码区免费内射一片色欲 | 性欧美疯狂xxxxbbbb | 麻豆精品国产精华精华液好用吗 | 国产成人精品久久亚洲高清不卡 | 午夜性刺激在线视频免费 | 久久99热只有频精品8 | 在线观看国产午夜福利片 | 国产av剧情md精品麻豆 | 黄网在线观看免费网站 | 久久这里只有精品视频9 | 麻豆精品国产精华精华液好用吗 | 宝宝好涨水快流出来免费视频 | 日韩av无码中文无码电影 | 久久精品中文字幕大胸 | 精品人人妻人人澡人人爽人人 | 18禁黄网站男男禁片免费观看 | 久久久国产一区二区三区 | 国产两女互慰高潮视频在线观看 | 大肉大捧一进一出视频出来呀 | 性生交片免费无码看人 | 国产精品亚洲а∨无码播放麻豆 | 国产乱码精品一品二品 | 人人妻人人澡人人爽精品欧美 | 乱中年女人伦av三区 | 午夜理论片yy44880影院 | 日韩成人一区二区三区在线观看 | 亚洲成a人片在线观看无码 | 国产精品久久精品三级 | 亚洲天堂2017无码中文 | 无码国产乱人伦偷精品视频 | 中文字幕+乱码+中文字幕一区 | 人妻插b视频一区二区三区 | 2020久久超碰国产精品最新 | 国产成人精品久久亚洲高清不卡 | 久久99精品国产麻豆 | 日本爽爽爽爽爽爽在线观看免 | 亚洲第一无码av无码专区 | 精品无码国产自产拍在线观看蜜 | 欧美国产亚洲日韩在线二区 | 精品无码av一区二区三区 | 强伦人妻一区二区三区视频18 | 无遮无挡爽爽免费视频 | 性欧美大战久久久久久久 | 天堂久久天堂av色综合 | yw尤物av无码国产在线观看 | 亚洲 高清 成人 动漫 | 亚洲国产精品一区二区第一页 | 国产综合色产在线精品 | 爱做久久久久久 | 无码帝国www无码专区色综合 | 在线观看免费人成视频 | 亚洲成av人影院在线观看 | 亚洲最大成人网站 | 疯狂三人交性欧美 | 99riav国产精品视频 | 亚洲经典千人经典日产 | 九九在线中文字幕无码 | 在线 国产 欧美 亚洲 天堂 | 国产明星裸体无码xxxx视频 | 国产在热线精品视频 | 国内丰满熟女出轨videos | 亚洲欧洲日本无在线码 | 国产精品久免费的黄网站 | 色婷婷香蕉在线一区二区 | 亚洲成a人片在线观看无码 | 国产三级精品三级男人的天堂 | 免费乱码人妻系列无码专区 | 中文字幕无码人妻少妇免费 | 国产av一区二区精品久久凹凸 | 中文字幕乱码人妻二区三区 | 无码人妻av免费一区二区三区 | 精品国产一区av天美传媒 | 国产极品视觉盛宴 | 亚无码乱人伦一区二区 | 一本加勒比波多野结衣 | 国产精品久久久久影院嫩草 | 永久黄网站色视频免费直播 | 精品国产精品久久一区免费式 | 高中生自慰www网站 | 亚洲中文字幕无码中文字在线 | 日本护士xxxxhd少妇 | 精品国产一区二区三区四区在线看 | 亚洲午夜福利在线观看 | 欧美日本精品一区二区三区 | 久久国产精品偷任你爽任你 | 国内少妇偷人精品视频 | 国产人妻精品午夜福利免费 | 中文字幕久久久久人妻 | 国产人成高清在线视频99最全资源 | 老子影院午夜伦不卡 | 99久久精品国产一区二区蜜芽 | 丁香花在线影院观看在线播放 | 18禁黄网站男男禁片免费观看 | 鲁一鲁av2019在线 | 奇米综合四色77777久久 东京无码熟妇人妻av在线网址 | 内射欧美老妇wbb | 免费网站看v片在线18禁无码 | 在线а√天堂中文官网 | 美女毛片一区二区三区四区 | 色综合久久中文娱乐网 | 人妻少妇精品无码专区动漫 | 粗大的内捧猛烈进出视频 | 三级4级全黄60分钟 | 欧美自拍另类欧美综合图片区 | 亚洲精品中文字幕久久久久 | 精品久久久无码中文字幕 | 亚洲 a v无 码免 费 成 人 a v | 2020久久超碰国产精品最新 | 成人精品一区二区三区中文字幕 | 亚洲理论电影在线观看 | 中文字幕精品av一区二区五区 | 国产精品久久久久久无码 | 国产亚洲精品久久久久久久 | 最近免费中文字幕中文高清百度 | 麻豆av传媒蜜桃天美传媒 | 国产又粗又硬又大爽黄老大爷视 | 色综合久久久久综合一本到桃花网 | 中文字幕色婷婷在线视频 | 国产免费久久久久久无码 | 极品尤物被啪到呻吟喷水 | 精品国产一区二区三区四区 | 久久国产精品萌白酱免费 | 99在线 | 亚洲 | 日日麻批免费40分钟无码 | 成熟女人特级毛片www免费 | 久久99精品久久久久久 | 久久综合九色综合97网 | 国产精品99久久精品爆乳 | 中文字幕色婷婷在线视频 | 野外少妇愉情中文字幕 | 美女黄网站人色视频免费国产 | 精品国产一区二区三区av 性色 | 性欧美疯狂xxxxbbbb | 亚洲熟悉妇女xxx妇女av | 久久久久久久女国产乱让韩 | 日韩成人一区二区三区在线观看 | 久久综合狠狠综合久久综合88 | 中文字幕日产无线码一区 | 欧美第一黄网免费网站 | 97久久国产亚洲精品超碰热 | 国产成人精品视频ⅴa片软件竹菊 | 欧美黑人性暴力猛交喷水 | 天下第一社区视频www日本 | 人人妻在人人 | 久久久精品成人免费观看 | 亚洲色大成网站www国产 | 粗大的内捧猛烈进出视频 | 四虎国产精品免费久久 | 人妻熟女一区 | 欧美激情内射喷水高潮 | 国产精品久久国产精品99 | 九九久久精品国产免费看小说 | 亚洲精品综合五月久久小说 | 国产一区二区三区精品视频 | 成人无码精品一区二区三区 | 日本精品人妻无码77777 天堂一区人妻无码 | 亚洲日韩av一区二区三区四区 | 婷婷五月综合激情中文字幕 | 国产精品美女久久久网av | 日本一卡2卡3卡四卡精品网站 | 国产va免费精品观看 | 久久精品99久久香蕉国产色戒 | 强伦人妻一区二区三区视频18 | 日日摸日日碰夜夜爽av | 牲欲强的熟妇农村老妇女视频 | 亚洲自偷自偷在线制服 | 日本丰满熟妇videos | 牲欲强的熟妇农村老妇女视频 | 少妇性l交大片 | 熟妇人妻中文av无码 | 久久人人爽人人爽人人片av高清 | 一本大道久久东京热无码av | 亚洲色在线无码国产精品不卡 | 日韩精品无码一本二本三本色 | 麻豆人妻少妇精品无码专区 | 中文字幕人妻无码一夲道 | 亚洲国产欧美国产综合一区 | 装睡被陌生人摸出水好爽 | 国产又粗又硬又大爽黄老大爷视 | 色欲久久久天天天综合网精品 | 国产免费久久久久久无码 | 扒开双腿疯狂进出爽爽爽视频 | 成人一在线视频日韩国产 | 日本高清一区免费中文视频 | a在线观看免费网站大全 | 久久天天躁狠狠躁夜夜免费观看 | 亚洲熟悉妇女xxx妇女av | 国产精品亚洲一区二区三区喷水 | 婷婷综合久久中文字幕蜜桃三电影 | 久久视频在线观看精品 | 国产麻豆精品一区二区三区v视界 | 久久久久亚洲精品中文字幕 | 亚洲国产一区二区三区在线观看 | 国产一区二区三区四区五区加勒比 | 婷婷五月综合缴情在线视频 | 精品一二三区久久aaa片 | 国产真人无遮挡作爱免费视频 | 久久精品国产精品国产精品污 | 性生交大片免费看女人按摩摩 | 中文亚洲成a人片在线观看 | 国产 浪潮av性色四虎 | 狂野欧美性猛xxxx乱大交 | 高潮喷水的毛片 | 丝袜 中出 制服 人妻 美腿 | 国产精品亚洲一区二区三区喷水 | 网友自拍区视频精品 | 成熟妇人a片免费看网站 | 免费播放一区二区三区 | 乱人伦人妻中文字幕无码久久网 | 成人aaa片一区国产精品 | 人人澡人人透人人爽 | 无码一区二区三区在线观看 | 内射白嫩少妇超碰 | 国产日产欧产精品精品app | 日韩av无码一区二区三区 | 国产av久久久久精东av | 国产猛烈高潮尖叫视频免费 | 国产无遮挡又黄又爽又色 | 国产高潮视频在线观看 | 一个人看的www免费视频在线观看 | 欧美人与禽zoz0性伦交 | 亚洲精品无码人妻无码 | 亚洲日韩av片在线观看 | 又湿又紧又大又爽a视频国产 | 日日鲁鲁鲁夜夜爽爽狠狠 | 国产无遮挡吃胸膜奶免费看 | 日本一区二区更新不卡 | 色婷婷香蕉在线一区二区 | 久热国产vs视频在线观看 | 性做久久久久久久久 | 婷婷综合久久中文字幕蜜桃三电影 | 国产成人午夜福利在线播放 | 国产av剧情md精品麻豆 | 内射老妇bbwx0c0ck | 亚洲狠狠婷婷综合久久 | 亚洲爆乳无码专区 | 97无码免费人妻超级碰碰夜夜 | 乌克兰少妇xxxx做受 | 中国大陆精品视频xxxx | 人妻少妇精品无码专区二区 | 欧美真人作爱免费视频 | 日本一区二区三区免费高清 | 国产精品久久久av久久久 | 黄网在线观看免费网站 | 亚洲日韩乱码中文无码蜜桃臀网站 | 黑人巨大精品欧美黑寡妇 | 99久久精品无码一区二区毛片 | 国产亲子乱弄免费视频 | 天海翼激烈高潮到腰振不止 | 亚洲成在人网站无码天堂 | 亚洲无人区午夜福利码高清完整版 | 日韩人妻少妇一区二区三区 | 久久久婷婷五月亚洲97号色 | 天堂亚洲2017在线观看 | 精品人人妻人人澡人人爽人人 | 国产综合色产在线精品 | 久久久精品欧美一区二区免费 | 欧美xxxxx精品 | 四虎国产精品一区二区 | 人妻互换免费中文字幕 | 在线视频网站www色 | 亚洲啪av永久无码精品放毛片 | 蜜桃视频插满18在线观看 | 欧美刺激性大交 | 久久99国产综合精品 | 久久99精品久久久久久 | 国产精品美女久久久久av爽李琼 | 亚洲高清偷拍一区二区三区 | 狂野欧美性猛交免费视频 | 欧美亚洲日韩国产人成在线播放 | 国内丰满熟女出轨videos | 成熟妇人a片免费看网站 | 无码任你躁久久久久久久 | 亚洲成av人综合在线观看 | 丝袜美腿亚洲一区二区 | 老子影院午夜精品无码 | 亚洲成a人片在线观看无码 | 久精品国产欧美亚洲色aⅴ大片 | 天天摸天天碰天天添 | 中文字幕乱码人妻无码久久 | 国产超级va在线观看视频 | 国产在热线精品视频 | 精品熟女少妇av免费观看 | 激情综合激情五月俺也去 | 中文字幕乱码中文乱码51精品 | 给我免费的视频在线观看 | 蜜臀av在线观看 在线欧美精品一区二区三区 | 中文字幕 人妻熟女 | 国产亚洲人成a在线v网站 | www国产精品内射老师 | 牲欲强的熟妇农村老妇女视频 | 日本丰满熟妇videos | 亚洲人亚洲人成电影网站色 | 日韩av无码一区二区三区不卡 | 亚洲国产精品美女久久久久 | 日日躁夜夜躁狠狠躁 | 国产熟妇另类久久久久 | 国产成人一区二区三区在线观看 | 久久久久久亚洲精品a片成人 | 成人免费视频一区二区 | 国产97在线 | 亚洲 | 欧美人与禽zoz0性伦交 | 亚洲色成人中文字幕网站 | 中国女人内谢69xxxx | 亚洲欧美精品伊人久久 | 日本熟妇浓毛 | 夜夜夜高潮夜夜爽夜夜爰爰 | 久久精品国产大片免费观看 | av无码不卡在线观看免费 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 成人欧美一区二区三区 | 最近免费中文字幕中文高清百度 | 帮老师解开蕾丝奶罩吸乳网站 | 国产内射爽爽大片视频社区在线 | 久久久久国色av免费观看性色 | 少妇高潮喷潮久久久影院 | 国产在线精品一区二区高清不卡 | 欧美黑人乱大交 | 强开小婷嫩苞又嫩又紧视频 | 亚洲gv猛男gv无码男同 | 欧美人与牲动交xxxx | 人人妻人人澡人人爽人人精品浪潮 | 国产精品亚洲lv粉色 | 久久久久99精品成人片 | 欧美猛少妇色xxxxx | 亚洲精品国产品国语在线观看 | 无码av岛国片在线播放 | 久久五月精品中文字幕 | 亚洲男人av香蕉爽爽爽爽 | 老司机亚洲精品影院无码 | 少妇激情av一区二区 | 精品一区二区三区波多野结衣 | 131美女爱做视频 | 帮老师解开蕾丝奶罩吸乳网站 | 亚洲 另类 在线 欧美 制服 | 亚洲中文字幕乱码av波多ji | 久久久精品欧美一区二区免费 | 18黄暴禁片在线观看 | 欧美性色19p | 中文字幕乱码中文乱码51精品 | 免费无码av一区二区 | 亚洲人成影院在线观看 | 97资源共享在线视频 | 无码人妻精品一区二区三区下载 | 日日摸天天摸爽爽狠狠97 | 1000部啪啪未满十八勿入下载 | 精品少妇爆乳无码av无码专区 | 亚洲a无码综合a国产av中文 | 免费国产成人高清在线观看网站 | 国产亲子乱弄免费视频 | 久久久中文久久久无码 | 天天燥日日燥 | 国产猛烈高潮尖叫视频免费 | 鲁鲁鲁爽爽爽在线视频观看 | 国产色精品久久人妻 | 精品久久久久久亚洲精品 | 装睡被陌生人摸出水好爽 | 国产乱人无码伦av在线a | 欧美真人作爱免费视频 | 夫妻免费无码v看片 | 亚洲一区二区三区播放 | 99精品无人区乱码1区2区3区 | 国产成人精品必看 | 狂野欧美性猛xxxx乱大交 | 色五月五月丁香亚洲综合网 | 精品偷拍一区二区三区在线看 | 十八禁视频网站在线观看 | 国产免费观看黄av片 | 东京热一精品无码av | 妺妺窝人体色www婷婷 | 55夜色66夜色国产精品视频 | 亚洲精品综合五月久久小说 | 日韩精品a片一区二区三区妖精 | 亚洲欧美综合区丁香五月小说 | 色一情一乱一伦 | 装睡被陌生人摸出水好爽 | 亚洲色偷偷男人的天堂 | 妺妺窝人体色www在线小说 | 日本饥渴人妻欲求不满 | 欧美性生交活xxxxxdddd | 亚洲精品一区三区三区在线观看 | 国色天香社区在线视频 | 免费播放一区二区三区 | 亚洲人成网站色7799 | 日产精品高潮呻吟av久久 | 55夜色66夜色国产精品视频 | 中文字幕无码av波多野吉衣 | 欧洲美熟女乱又伦 | 樱花草在线社区www | 99视频精品全部免费免费观看 | 无码国产乱人伦偷精品视频 | 亚洲中文字幕va福利 | 国产精品国产三级国产专播 | 国产97色在线 | 免 | 日本一卡2卡3卡四卡精品网站 | 中文无码成人免费视频在线观看 | 鲁鲁鲁爽爽爽在线视频观看 | 国产精品香蕉在线观看 | 国产精品亚洲一区二区三区喷水 | 亲嘴扒胸摸屁股激烈网站 | 人人超人人超碰超国产 | 国产激情艳情在线看视频 | 久久综合给久久狠狠97色 | 影音先锋中文字幕无码 | 人人澡人人妻人人爽人人蜜桃 | 亚无码乱人伦一区二区 | 中文字幕av无码一区二区三区电影 | 在线观看国产一区二区三区 | 亚洲熟悉妇女xxx妇女av | 免费男性肉肉影院 | 久久午夜夜伦鲁鲁片无码免费 | 性生交大片免费看l | 人人妻人人澡人人爽精品欧美 | 性生交片免费无码看人 | 无码乱肉视频免费大全合集 | 桃花色综合影院 | 波多野结衣av一区二区全免费观看 | 色综合久久久无码中文字幕 | 久久久久成人精品免费播放动漫 | 国产精品-区区久久久狼 | 中文字幕+乱码+中文字幕一区 | 久久精品无码一区二区三区 | 日韩av无码一区二区三区 | 免费观看的无遮挡av | 欧美大屁股xxxxhd黑色 | 一本久道高清无码视频 | 狠狠躁日日躁夜夜躁2020 | 精品国产av色一区二区深夜久久 | 成人免费视频视频在线观看 免费 | √天堂中文官网8在线 | 久久国产精品精品国产色婷婷 | 伊人久久大香线焦av综合影院 | 欧美日韩一区二区三区自拍 | 天天拍夜夜添久久精品 | 亚洲人成人无码网www国产 | 99久久人妻精品免费一区 | 国产精品人妻一区二区三区四 | 欧美人与动性行为视频 | 少妇人妻大乳在线视频 | 亚洲国产精品久久久久久 | 98国产精品综合一区二区三区 | 日本精品人妻无码免费大全 | 扒开双腿吃奶呻吟做受视频 | 国产成人无码av一区二区 | 日本大乳高潮视频在线观看 | 欧美成人午夜精品久久久 | 噜噜噜亚洲色成人网站 | 久久午夜夜伦鲁鲁片无码免费 | 国产午夜无码精品免费看 | 久久久精品成人免费观看 | 国产精品亚洲lv粉色 | 亚洲色在线无码国产精品不卡 | 欧美日本精品一区二区三区 | 亚洲 另类 在线 欧美 制服 | 国产精品毛多多水多 | 伦伦影院午夜理论片 | 永久免费观看国产裸体美女 | 国产内射爽爽大片视频社区在线 | 日韩精品久久久肉伦网站 | 日本精品久久久久中文字幕 | 国产成人无码av在线影院 | 无码人妻出轨黑人中文字幕 | 欧美阿v高清资源不卡在线播放 | 亚洲国产精华液网站w | а天堂中文在线官网 | 亚洲精品欧美二区三区中文字幕 | 帮老师解开蕾丝奶罩吸乳网站 | 久久综合色之久久综合 | 无码国内精品人妻少妇 | 国产舌乚八伦偷品w中 | 国产免费久久精品国产传媒 | 亚洲综合无码一区二区三区 | 精品人人妻人人澡人人爽人人 | 最新版天堂资源中文官网 | 欧美性黑人极品hd | 国产日产欧产精品精品app | 久久久久亚洲精品中文字幕 | 波多野结衣一区二区三区av免费 | 国产成人无码午夜视频在线观看 | 最近免费中文字幕中文高清百度 | 国产麻豆精品一区二区三区v视界 | 亚洲另类伦春色综合小说 | 亚洲自偷自拍另类第1页 | 我要看www免费看插插视频 | 久久熟妇人妻午夜寂寞影院 | 国产成人综合色在线观看网站 | 成人亚洲精品久久久久 | 中文字幕无码免费久久9一区9 | 中文字幕无码av激情不卡 | 日日躁夜夜躁狠狠躁 | 欧美肥老太牲交大战 | 欧美国产日韩亚洲中文 | 嫩b人妻精品一区二区三区 | 一本久久a久久精品vr综合 | 中文字幕中文有码在线 | 国产又爽又猛又粗的视频a片 | 国产色精品久久人妻 | 欧美怡红院免费全部视频 | 欧美zoozzooz性欧美 | 国产人妻久久精品二区三区老狼 | 亚洲一区二区观看播放 | 久久人妻内射无码一区三区 | 老太婆性杂交欧美肥老太 | 在线播放无码字幕亚洲 | 久久精品视频在线看15 | 性欧美大战久久久久久久 | 久久国语露脸国产精品电影 | 欧美 日韩 人妻 高清 中文 | 在线观看免费人成视频 | 免费无码av一区二区 | 国产成人无码av在线影院 | 国产精品久久久久久亚洲影视内衣 | 欧美激情内射喷水高潮 | 任你躁在线精品免费 | 欧美日韩久久久精品a片 | 亚洲另类伦春色综合小说 | 国产成人人人97超碰超爽8 | 国产三级精品三级男人的天堂 | 成人精品一区二区三区中文字幕 | 欧美日本免费一区二区三区 | 亚洲精品综合五月久久小说 | 97夜夜澡人人爽人人喊中国片 | 精品无码一区二区三区爱欲 | 欧美成人免费全部网站 | 白嫩日本少妇做爰 | 小鲜肉自慰网站xnxx | 性欧美疯狂xxxxbbbb | 玩弄人妻少妇500系列视频 | 未满小14洗澡无码视频网站 | 欧美激情综合亚洲一二区 | 男女下面进入的视频免费午夜 | 黑人大群体交免费视频 | 久久久亚洲欧洲日产国码αv | 国产免费观看黄av片 | 在线精品亚洲一区二区 | 国产精品美女久久久网av | av在线亚洲欧洲日产一区二区 | 巨爆乳无码视频在线观看 | 久久国产36精品色熟妇 | 成人综合网亚洲伊人 | 国产人妻精品午夜福利免费 | www成人国产高清内射 | 一本大道伊人av久久综合 | 亚洲国产欧美日韩精品一区二区三区 | 国产人妻久久精品二区三区老狼 | 久久国产精品萌白酱免费 | 少妇愉情理伦片bd | 亚洲色欲色欲欲www在线 | 国产精品久久久久久久9999 | 亚洲一区二区三区含羞草 | 十八禁视频网站在线观看 | 男人的天堂2018无码 | 成人欧美一区二区三区 | 宝宝好涨水快流出来免费视频 | 蜜桃视频插满18在线观看 | 88国产精品欧美一区二区三区 | 亚洲精品中文字幕久久久久 | 激情人妻另类人妻伦 | 中文字幕人妻无码一区二区三区 | 亚洲精品一区二区三区四区五区 | 东北女人啪啪对白 | 久久伊人色av天堂九九小黄鸭 | 国产黄在线观看免费观看不卡 | 亚洲精品欧美二区三区中文字幕 | 给我免费的视频在线观看 | 成人欧美一区二区三区黑人 | 水蜜桃av无码 | 日韩精品无码一区二区中文字幕 | 精品无码国产一区二区三区av | 无码人妻久久一区二区三区不卡 | 久久久久se色偷偷亚洲精品av | 日日夜夜撸啊撸 | 国产激情精品一区二区三区 | 亚洲成av人片在线观看无码不卡 | 久久久久免费精品国产 | 大地资源网第二页免费观看 | 最新版天堂资源中文官网 | 精品无人区无码乱码毛片国产 | 中文字幕无码乱人伦 | 久久久久成人精品免费播放动漫 | 永久免费观看美女裸体的网站 | 国产特级毛片aaaaaaa高清 | 久久精品国产一区二区三区肥胖 | 日韩 欧美 动漫 国产 制服 | 又粗又大又硬又长又爽 | 大肉大捧一进一出视频出来呀 | 亚洲日韩av一区二区三区四区 | 国产免费观看黄av片 | 亚洲精品无码国产 | 久久国产精品精品国产色婷婷 | 国产av无码专区亚洲awww | 西西人体www44rt大胆高清 | 麻豆人妻少妇精品无码专区 | 亚欧洲精品在线视频免费观看 | 国产成人av免费观看 | 俺去俺来也在线www色官网 | 伊在人天堂亚洲香蕉精品区 | 精品无人国产偷自产在线 | 国产精品va在线播放 | 亚洲乱亚洲乱妇50p | 玩弄人妻少妇500系列视频 | 伊人久久大香线蕉午夜 | 一本一道久久综合久久 | 在线观看国产午夜福利片 | 国产97色在线 | 免 | 国产成人精品优优av | 国产69精品久久久久app下载 | 内射老妇bbwx0c0ck | 99久久婷婷国产综合精品青草免费 | 亚洲综合另类小说色区 | 黑人巨大精品欧美一区二区 | 爱做久久久久久 | 大胆欧美熟妇xx | 一本大道伊人av久久综合 | 蜜桃av蜜臀av色欲av麻 999久久久国产精品消防器材 | 欧美放荡的少妇 | 中文字幕精品av一区二区五区 | 天堂а√在线中文在线 | 欧美喷潮久久久xxxxx | 亚洲精品成人福利网站 | 久久99热只有频精品8 | 亚洲欧美精品aaaaaa片 | 99久久无码一区人妻 | 草草网站影院白丝内射 | 精品久久综合1区2区3区激情 | 黑人玩弄人妻中文在线 | 国产办公室秘书无码精品99 | 久久综合九色综合欧美狠狠 | 乌克兰少妇性做爰 | 少妇久久久久久人妻无码 | 2020久久香蕉国产线看观看 | 久久亚洲国产成人精品性色 | 成人一在线视频日韩国产 | 色狠狠av一区二区三区 | 一个人看的视频www在线 | 亚洲精品中文字幕久久久久 | 67194成是人免费无码 | 漂亮人妻洗澡被公强 日日躁 | 国内精品一区二区三区不卡 | 九九热爱视频精品 | 亚洲自偷自偷在线制服 | 午夜无码区在线观看 | 色婷婷久久一区二区三区麻豆 | 无码国产色欲xxxxx视频 | 亚洲国产成人av在线观看 | 精品久久久无码人妻字幂 | 无套内谢的新婚少妇国语播放 | 最近免费中文字幕中文高清百度 | 欧美 日韩 人妻 高清 中文 | 人人超人人超碰超国产 | 久久99精品久久久久婷婷 | 人妻人人添人妻人人爱 | 亚洲精品久久久久久一区二区 | 亚洲の无码国产の无码影院 | 久久久久免费精品国产 | 欧美老妇与禽交 | 亚洲色大成网站www国产 | 日韩精品乱码av一区二区 | 欧美xxxxx精品 | 欧美日韩一区二区三区自拍 | 成年美女黄网站色大免费全看 | 日日摸日日碰夜夜爽av | 领导边摸边吃奶边做爽在线观看 | 欧美人与善在线com | 亚洲精品国产a久久久久久 | 在线а√天堂中文官网 | 亚洲七七久久桃花影院 | 中文亚洲成a人片在线观看 | 亚洲色大成网站www国产 | 亚洲精品久久久久久久久久久 | 久久zyz资源站无码中文动漫 | 欧美丰满少妇xxxx性 | 欧美 丝袜 自拍 制服 另类 | 亚洲s码欧洲m码国产av | 中国大陆精品视频xxxx | 成熟女人特级毛片www免费 | 日产精品99久久久久久 | 亚洲码国产精品高潮在线 | 国产亚洲欧美日韩亚洲中文色 | 乱人伦人妻中文字幕无码 | 国产精品无码一区二区三区不卡 | 天堂久久天堂av色综合 | 国产成人无码午夜视频在线观看 | 亚洲s色大片在线观看 | 天堂а√在线中文在线 | 人人妻人人澡人人爽人人精品 | 国产午夜亚洲精品不卡下载 | 久久久国产精品无码免费专区 | 国产九九九九九九九a片 | 强奷人妻日本中文字幕 | 沈阳熟女露脸对白视频 | 亚洲成av人综合在线观看 | а√天堂www在线天堂小说 | 国产av久久久久精东av | 蜜桃无码一区二区三区 | 午夜不卡av免费 一本久久a久久精品vr综合 | 精品水蜜桃久久久久久久 | 亚洲国产高清在线观看视频 | 装睡被陌生人摸出水好爽 | www国产精品内射老师 | 荫蒂被男人添的好舒服爽免费视频 | 欧美第一黄网免费网站 | 亚洲中文字幕在线无码一区二区 | 日韩人妻少妇一区二区三区 | 久久亚洲a片com人成 | 精品少妇爆乳无码av无码专区 | 亚洲成av人综合在线观看 | 天天躁夜夜躁狠狠是什么心态 | 无遮挡啪啪摇乳动态图 | 小sao货水好多真紧h无码视频 | 最新国产麻豆aⅴ精品无码 | 一个人免费观看的www视频 | 99久久精品国产一区二区蜜芽 | 98国产精品综合一区二区三区 | 久久亚洲国产成人精品性色 | 国产真实伦对白全集 | 两性色午夜视频免费播放 | 国产高清av在线播放 | 麻豆md0077饥渴少妇 | 日本熟妇乱子伦xxxx | 日本熟妇乱子伦xxxx | 日本欧美一区二区三区乱码 | 激情国产av做激情国产爱 | 四虎影视成人永久免费观看视频 | а√天堂www在线天堂小说 | 婷婷六月久久综合丁香 | 无码人妻少妇伦在线电影 | 国产疯狂伦交大片 | 高清国产亚洲精品自在久久 | 亚洲精品一区二区三区在线观看 | 国产美女精品一区二区三区 | 永久免费观看美女裸体的网站 | 欧洲极品少妇 | 亚洲国产欧美日韩精品一区二区三区 | 沈阳熟女露脸对白视频 | 婷婷五月综合激情中文字幕 | 免费观看又污又黄的网站 | 中文字幕久久久久人妻 | 亚洲熟妇色xxxxx欧美老妇 | 成人试看120秒体验区 | 日本大香伊一区二区三区 | 美女扒开屁股让男人桶 | 中文字幕精品av一区二区五区 | 99久久久国产精品无码免费 | 少妇无码av无码专区在线观看 | 成人性做爰aaa片免费看 | 国产真实乱对白精彩久久 | 亚洲男人av香蕉爽爽爽爽 | 成人性做爰aaa片免费看 | 女人被男人躁得好爽免费视频 | 99国产精品白浆在线观看免费 | 天堂亚洲免费视频 | 国产情侣作爱视频免费观看 | 极品嫩模高潮叫床 | 荫蒂添的好舒服视频囗交 | 欧美老熟妇乱xxxxx | 无码人妻出轨黑人中文字幕 | 伊人久久大香线蕉av一区二区 | 久久精品一区二区三区四区 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 黄网在线观看免费网站 | 欧美日韩综合一区二区三区 | 国产精品二区一区二区aⅴ污介绍 | 性欧美疯狂xxxxbbbb | 中文字幕无码av波多野吉衣 | 5858s亚洲色大成网站www | 国内丰满熟女出轨videos | 国产激情无码一区二区app | 亚洲国产成人av在线观看 | 久久精品女人的天堂av | 人妻aⅴ无码一区二区三区 | 亚洲国产精品久久久久久 | 狂野欧美性猛xxxx乱大交 | 国产精品久久福利网站 | 精品国产av色一区二区深夜久久 | 欧洲vodafone精品性 | 鲁大师影院在线观看 | 亚洲一区二区三区播放 | 精品国产一区二区三区四区 | 国产极品美女高潮无套在线观看 | 久久亚洲中文字幕精品一区 | 亚洲精品午夜无码电影网 | 中文字幕人妻丝袜二区 | 国产内射爽爽大片视频社区在线 | 精品乱子伦一区二区三区 | 人妻插b视频一区二区三区 | 天天燥日日燥 | 精品国产福利一区二区 | 极品尤物被啪到呻吟喷水 | 内射爽无广熟女亚洲 | 精品人妻人人做人人爽夜夜爽 | 好屌草这里只有精品 | 中文无码精品a∨在线观看不卡 | 性欧美熟妇videofreesex | 亚洲 激情 小说 另类 欧美 | 性生交片免费无码看人 | 丝袜 中出 制服 人妻 美腿 | 麻豆果冻传媒2021精品传媒一区下载 | 国产精华av午夜在线观看 | 亚洲国产精品久久久天堂 | 国产无套粉嫩白浆在线 | 国产国产精品人在线视 | 欧洲精品码一区二区三区免费看 | 人人妻在人人 | 99国产欧美久久久精品 | 日本一区二区三区免费播放 | 西西人体www44rt大胆高清 | 精品国产av色一区二区深夜久久 | 波多野结衣aⅴ在线 | 精品日本一区二区三区在线观看 | 亚洲精品一区二区三区大桥未久 | 日本精品人妻无码免费大全 | 欧美freesex黑人又粗又大 | 亚洲国产av精品一区二区蜜芽 | 亚洲男女内射在线播放 | 亚洲人成人无码网www国产 | 大地资源网第二页免费观看 | 亚洲精品国偷拍自产在线观看蜜桃 | 久久国产劲爆∧v内射 | 午夜福利一区二区三区在线观看 | 亚洲成色在线综合网站 | 激情人妻另类人妻伦 | 免费无码午夜福利片69 | 动漫av一区二区在线观看 | 中文字幕人妻无码一区二区三区 | √天堂中文官网8在线 | 国产亚洲视频中文字幕97精品 | 永久免费精品精品永久-夜色 | 牛和人交xxxx欧美 | 九九热爱视频精品 | 无码纯肉视频在线观看 | 成人av无码一区二区三区 | 午夜精品久久久久久久 | 亚洲精品久久久久avwww潮水 | 久久精品国产亚洲精品 | 人妻尝试又大又粗久久 | 亚洲毛片av日韩av无码 | 国产人妻精品一区二区三区不卡 | 又大又硬又黄的免费视频 | 亚洲中文字幕av在天堂 | 精品欧美一区二区三区久久久 | 国产偷自视频区视频 | 国产色在线 | 国产 | 无套内谢的新婚少妇国语播放 | 东京热男人av天堂 | 亚洲精品国偷拍自产在线观看蜜桃 | 国产精品人人妻人人爽 | 欧美精品无码一区二区三区 | 东京无码熟妇人妻av在线网址 | 爽爽影院免费观看 | 熟妇人妻中文av无码 | 久久人人爽人人爽人人片av高清 | 激情国产av做激情国产爱 | 欧美真人作爱免费视频 | 免费网站看v片在线18禁无码 | 精品久久久无码人妻字幂 | 国产精品无码一区二区桃花视频 | 牲欲强的熟妇农村老妇女 | 国产成人无码av片在线观看不卡 | 日本精品久久久久中文字幕 | 久久综合香蕉国产蜜臀av | 狠狠色欧美亚洲狠狠色www | 女人被爽到呻吟gif动态图视看 | 丰满少妇人妻久久久久久 | 久热国产vs视频在线观看 | 任你躁国产自任一区二区三区 | 中文无码伦av中文字幕 | √天堂资源地址中文在线 | 日韩欧美群交p片內射中文 | 国产97人人超碰caoprom | 中国大陆精品视频xxxx | 亚洲精品成人av在线 | 精品人妻av区 | 精品久久综合1区2区3区激情 | 中文字幕人成乱码熟女app | 中文字幕乱妇无码av在线 | 免费人成网站视频在线观看 | 永久免费精品精品永久-夜色 | 少妇无码av无码专区在线观看 | 国产精品久久久久久亚洲影视内衣 | 中文字幕乱妇无码av在线 | 亲嘴扒胸摸屁股激烈网站 | 色诱久久久久综合网ywww | 亚洲精品午夜国产va久久成人 | 一本久久伊人热热精品中文字幕 | 中文无码伦av中文字幕 | 久久综合久久自在自线精品自 | 国产人成高清在线视频99最全资源 | 久久亚洲精品中文字幕无男同 | 偷窥日本少妇撒尿chinese | 中文字幕乱码中文乱码51精品 | 欧美熟妇另类久久久久久不卡 | 夜夜高潮次次欢爽av女 | 国模大胆一区二区三区 | 日本熟妇乱子伦xxxx | 熟女俱乐部五十路六十路av | 一本大道久久东京热无码av | 亚洲va欧美va天堂v国产综合 | 日韩精品一区二区av在线 | 久久久国产一区二区三区 | 国产麻豆精品精东影业av网站 | 天天拍夜夜添久久精品大 | 精品日本一区二区三区在线观看 | aⅴ亚洲 日韩 色 图网站 播放 | 中文字幕无码乱人伦 | 丁香啪啪综合成人亚洲 | 性做久久久久久久免费看 | 亚洲国产精品无码一区二区三区 | 精品欧洲av无码一区二区三区 | 亚洲成av人在线观看网址 | 扒开双腿吃奶呻吟做受视频 | 亚洲一区二区三区四区 | 伊人久久大香线焦av综合影院 | 国产精品久久久久无码av色戒 | 麻豆精产国品 | 免费观看又污又黄的网站 | 一二三四在线观看免费视频 | 极品嫩模高潮叫床 | 亚洲精品一区二区三区在线 | 成人免费视频在线观看 | 东京热无码av男人的天堂 | 人人妻人人澡人人爽欧美一区九九 | 免费人成在线视频无码 | 人妻无码αv中文字幕久久琪琪布 | 99久久亚洲精品无码毛片 | 爆乳一区二区三区无码 | 亚洲日韩av一区二区三区四区 | 沈阳熟女露脸对白视频 | 日韩 欧美 动漫 国产 制服 | 日韩精品成人一区二区三区 | 欧美人妻一区二区三区 | 97无码免费人妻超级碰碰夜夜 | 国产精品丝袜黑色高跟鞋 | 亚洲成av人片天堂网无码】 | 最近免费中文字幕中文高清百度 | 亚洲成在人网站无码天堂 | 亚洲色无码一区二区三区 | 综合人妻久久一区二区精品 | 女人被爽到呻吟gif动态图视看 | 精品国产av色一区二区深夜久久 | 国产香蕉尹人综合在线观看 | 国产精品沙发午睡系列 | 国产精品无码mv在线观看 | 永久免费观看美女裸体的网站 | 精品一二三区久久aaa片 | 国产无套内射久久久国产 | 大肉大捧一进一出好爽视频 | 美女极度色诱视频国产 | av小次郎收藏 | 久久久中文久久久无码 | 精品亚洲韩国一区二区三区 | 亚洲热妇无码av在线播放 | 99久久久国产精品无码免费 | 亚洲成a人片在线观看无码3d | 色欲久久久天天天综合网精品 | 99久久99久久免费精品蜜桃 | 国产偷国产偷精品高清尤物 | 中国女人内谢69xxxx | 夜夜夜高潮夜夜爽夜夜爰爰 | 乱人伦人妻中文字幕无码 | 国产无遮挡又黄又爽又色 | 久久综合九色综合欧美狠狠 | 午夜理论片yy44880影院 | 青青草原综合久久大伊人精品 | 亚洲中文字幕av在天堂 | 欧美熟妇另类久久久久久多毛 | 国产成人一区二区三区别 | 久久99精品久久久久久动态图 | 色五月丁香五月综合五月 | 国产亚洲精品久久久闺蜜 | 青春草在线视频免费观看 | 夜夜夜高潮夜夜爽夜夜爰爰 | 欧美人与动性行为视频 | 国产性生交xxxxx无码 | 国产精品毛片一区二区 | 国内少妇偷人精品视频免费 | 97夜夜澡人人爽人人喊中国片 | 久久久久成人片免费观看蜜芽 | 人妻少妇精品视频专区 | 给我免费的视频在线观看 | 小sao货水好多真紧h无码视频 | 亚洲国产成人a精品不卡在线 | 亚洲精品国产第一综合99久久 | 国产精品久久久久9999小说 | 人人澡人人透人人爽 | 欧美日韩综合一区二区三区 | 亚洲色欲久久久综合网东京热 | 国产在线精品一区二区高清不卡 | 日本一区二区三区免费高清 | 精品无码国产一区二区三区av | 日韩精品久久久肉伦网站 | 日产精品99久久久久久 | 久久亚洲中文字幕无码 | 精品国偷自产在线视频 | 久久99热只有频精品8 | 国产精品丝袜黑色高跟鞋 | 精品久久久中文字幕人妻 | 人妻有码中文字幕在线 | 久青草影院在线观看国产 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 亚洲男人av香蕉爽爽爽爽 | 男女性色大片免费网站 | 成 人 免费观看网站 | 亚洲乱码中文字幕在线 | 亚洲色欲色欲欲www在线 | 乱人伦人妻中文字幕无码久久网 | 久久99热只有频精品8 | 亚洲无人区午夜福利码高清完整版 | 亚洲啪av永久无码精品放毛片 | 好男人www社区 | 熟女体下毛毛黑森林 | 日日碰狠狠躁久久躁蜜桃 | 国产69精品久久久久app下载 | 亚洲熟女一区二区三区 | 亚洲一区二区三区 | 正在播放老肥熟妇露脸 | 99视频精品全部免费免费观看 | 欧美 丝袜 自拍 制服 另类 | 又大又紧又粉嫩18p少妇 | 国产两女互慰高潮视频在线观看 | av人摸人人人澡人人超碰下载 | 强辱丰满人妻hd中文字幕 | 色五月五月丁香亚洲综合网 | 欧美大屁股xxxxhd黑色 | 国产农村乱对白刺激视频 | 国产精品亚洲一区二区三区喷水 | 久久人妻内射无码一区三区 | 欧美日韩一区二区综合 | 伦伦影院午夜理论片 | 精品国产国产综合精品 | 精品午夜福利在线观看 | 色综合视频一区二区三区 | 人人澡人人透人人爽 | 国产麻豆精品一区二区三区v视界 | 国产亚洲精品久久久闺蜜 | 国产激情无码一区二区app | 久久久久久国产精品无码下载 | 色妞www精品免费视频 | 最新国产乱人伦偷精品免费网站 | 亚洲成在人网站无码天堂 | 亚洲最大成人网站 | 日韩少妇内射免费播放 | 国产精品人人爽人人做我的可爱 | 18黄暴禁片在线观看 | 国内精品一区二区三区不卡 | av无码电影一区二区三区 | 久在线观看福利视频 | 噜噜噜亚洲色成人网站 | 成人动漫在线观看 | 免费国产成人高清在线观看网站 | 国产一区二区三区日韩精品 | 大地资源网第二页免费观看 | 精品久久久久久亚洲精品 | 成人综合网亚洲伊人 | 人人爽人人爽人人片av亚洲 | 国产真实夫妇视频 | 国产疯狂伦交大片 | 精品无码av一区二区三区 | 亚洲国产精华液网站w | 丁香花在线影院观看在线播放 | 无套内谢的新婚少妇国语播放 | 麻豆av传媒蜜桃天美传媒 | 久久国内精品自在自线 | 男人的天堂2018无码 | 美女黄网站人色视频免费国产 | 国产精品二区一区二区aⅴ污介绍 | 97夜夜澡人人双人人人喊 | 久久天天躁狠狠躁夜夜免费观看 | 国产精品va在线观看无码 | 在线播放亚洲第一字幕 | 色五月丁香五月综合五月 | 亚洲日韩av一区二区三区中文 | 精品 日韩 国产 欧美 视频 | 亚洲人成影院在线无码按摩店 | 国产人成高清在线视频99最全资源 | 久久综合给合久久狠狠狠97色 | 黑人巨大精品欧美黑寡妇 | 黑森林福利视频导航 | 少妇太爽了在线观看 | 小泽玛莉亚一区二区视频在线 | 欧美亚洲国产一区二区三区 | 综合激情五月综合激情五月激情1 | 熟妇激情内射com | 成人毛片一区二区 | 久久久久久国产精品无码下载 | 波多野结衣av一区二区全免费观看 | 国产人妻精品一区二区三区不卡 | 丰满少妇弄高潮了www | 色诱久久久久综合网ywww | 欧美兽交xxxx×视频 | 久久久久国色av免费观看性色 | 中文字幕日韩精品一区二区三区 | 在线天堂新版最新版在线8 | 老司机亚洲精品影院 | 欧美亚洲国产一区二区三区 | 国产精品久久久久影院嫩草 | 久久综合网欧美色妞网 | 亚洲精品成人福利网站 | 亚洲熟妇色xxxxx欧美老妇y | 日日噜噜噜噜夜夜爽亚洲精品 | 丰满妇女强制高潮18xxxx | 国产69精品久久久久app下载 | 蜜桃av蜜臀av色欲av麻 999久久久国产精品消防器材 | 少妇无码一区二区二三区 | 精品人妻人人做人人爽夜夜爽 | 日本大香伊一区二区三区 | 亚洲精品一区二区三区在线观看 | 欧美日韩一区二区三区自拍 | 成年美女黄网站色大免费视频 | 啦啦啦www在线观看免费视频 | 亚洲精品国产第一综合99久久 | 精品国产aⅴ无码一区二区 | 国产精品美女久久久网av | 成人影院yy111111在线观看 | 最近免费中文字幕中文高清百度 | 四虎永久在线精品免费网址 | 免费观看黄网站 | 亚洲国产成人a精品不卡在线 | 国内综合精品午夜久久资源 | 夜夜影院未满十八勿进 | 免费视频欧美无人区码 | 高清无码午夜福利视频 | 久久亚洲日韩精品一区二区三区 | 亚洲の无码国产の无码步美 | www国产亚洲精品久久网站 | 国产va免费精品观看 | 国产综合久久久久鬼色 | 成人女人看片免费视频放人 | av无码电影一区二区三区 | 色五月丁香五月综合五月 | av无码电影一区二区三区 | 色综合久久88色综合天天 | 六月丁香婷婷色狠狠久久 | 无码人妻精品一区二区三区不卡 | 国产电影无码午夜在线播放 | 人人爽人人澡人人人妻 | 亚洲色无码一区二区三区 | 精品乱子伦一区二区三区 | 久久综合激激的五月天 | 中文字幕无线码免费人妻 | 国产精品va在线观看无码 | 精品无人国产偷自产在线 | 伊人久久大香线蕉亚洲 | 思思久久99热只有频精品66 | 精品乱码久久久久久久 | 国产无遮挡吃胸膜奶免费看 | 日韩视频 中文字幕 视频一区 | 漂亮人妻洗澡被公强 日日躁 | 乱人伦人妻中文字幕无码久久网 | 国产熟妇另类久久久久 | 亚洲精品成人福利网站 | 久久亚洲日韩精品一区二区三区 | 少妇太爽了在线观看 | 精品国产一区二区三区av 性色 | 国产成人无码一二三区视频 | 亚洲第一网站男人都懂 | 久久久久久九九精品久 | 宝宝好涨水快流出来免费视频 | 国产综合久久久久鬼色 | 草草网站影院白丝内射 | 国产人妻人伦精品1国产丝袜 | 中文字幕+乱码+中文字幕一区 | 免费看男女做好爽好硬视频 | 亚洲s色大片在线观看 | 精品国产一区二区三区av 性色 | 十八禁视频网站在线观看 | 国语自产偷拍精品视频偷 | 中文字幕色婷婷在线视频 | 67194成是人免费无码 | 国产精品18久久久久久麻辣 | 丰满肥臀大屁股熟妇激情视频 | 日韩精品无码一本二本三本色 | 亚洲va欧美va天堂v国产综合 | 国产高潮视频在线观看 | 日本丰满熟妇videos | 男女猛烈xx00免费视频试看 | 成人无码影片精品久久久 | 亚洲中文字幕久久无码 | 日韩欧美中文字幕在线三区 | 男人扒开女人内裤强吻桶进去 | 中文字幕久久久久人妻 | a片免费视频在线观看 | 日本一卡二卡不卡视频查询 | 激情五月综合色婷婷一区二区 | 久久99精品国产麻豆蜜芽 | 国产美女精品一区二区三区 | 娇妻被黑人粗大高潮白浆 | 久久精品女人天堂av免费观看 | 亚洲一区二区三区含羞草 | 无码国产激情在线观看 | 久久精品视频在线看15 | 久久午夜无码鲁丝片午夜精品 | 亚洲阿v天堂在线 | 牲欲强的熟妇农村老妇女 | 人妻互换免费中文字幕 | 性欧美牲交xxxxx视频 | 狂野欧美性猛交免费视频 | 又色又爽又黄的美女裸体网站 | 国产偷抇久久精品a片69 | 国产精品高潮呻吟av久久4虎 | 欧美人妻一区二区三区 | 亚洲欧美日韩国产精品一区二区 | 成熟人妻av无码专区 | 亚洲国产高清在线观看视频 | 宝宝好涨水快流出来免费视频 | 性做久久久久久久免费看 | 亚洲国精产品一二二线 | 四虎永久在线精品免费网址 | 国产精品福利视频导航 | 亚洲国产精品成人久久蜜臀 | 亚洲男女内射在线播放 | 国产精品久久国产精品99 | 亚洲の无码国产の无码影院 | 中文字幕乱码中文乱码51精品 | 最新国产乱人伦偷精品免费网站 | 中文字幕av日韩精品一区二区 | 亚洲日韩精品欧美一区二区 | 成人欧美一区二区三区黑人免费 | 一本大道久久东京热无码av | 亚洲综合另类小说色区 | 特黄特色大片免费播放器图片 | 樱花草在线社区www | 乌克兰少妇性做爰 | 亚洲色www成人永久网址 | 一本无码人妻在中文字幕免费 | 国产精品va在线播放 | 荫蒂添的好舒服视频囗交 | 人人妻人人澡人人爽欧美一区九九 | 在线播放免费人成毛片乱码 | 亚洲狠狠婷婷综合久久 | 日本熟妇大屁股人妻 | 少妇性荡欲午夜性开放视频剧场 | 亚洲乱亚洲乱妇50p | 真人与拘做受免费视频一 | 欧美亚洲国产一区二区三区 | 亚洲成av人综合在线观看 | 99re在线播放 | 欧美日韩一区二区综合 | 亚洲自偷自拍另类第1页 |