Python数模笔记-PuLP库(3)线性规划实例
本節(jié)以一個(gè)實(shí)際數(shù)學(xué)建模案例,講解 PuLP 求解線性規(guī)劃問(wèn)題的建模與編程。
1、問(wèn)題描述
某廠生產(chǎn)甲乙兩種飲料,每百箱甲飲料需用原料6千克、工人10名,獲利10萬(wàn)元;每百箱乙飲料需用原料5千克、工人20名,獲利9萬(wàn)元。
今工廠共有原料60千克、工人150名,又由于其他條件所限甲飲料產(chǎn)量不超過(guò)8百箱。
(1)問(wèn)如何安排生產(chǎn)計(jì)劃,即兩種飲料各生產(chǎn)多少使獲利最大?
(2)若投資0.8萬(wàn)元可增加原料1千克,是否應(yīng)作這項(xiàng)投資?投資多少合理?
(3)若每百箱甲飲料獲利可增加1萬(wàn)元,是否應(yīng)否改變生產(chǎn)計(jì)劃?
(4)若每百箱甲飲料獲利可增加1萬(wàn)元,若投資0.8萬(wàn)元可增加原料1千克,是否應(yīng)作這項(xiàng)投資?投資多少合理?
(5)若不允許散箱(按整百箱生產(chǎn)),如何安排生產(chǎn)計(jì)劃,即兩種飲料各生產(chǎn)多少使獲利最大?
歡迎關(guān)注 Youcans 原創(chuàng)系列,每周更新數(shù)模筆記
Python數(shù)模筆記-PuLP庫(kù)
Python數(shù)模筆記-StatsModels統(tǒng)計(jì)回歸
Python數(shù)模筆記-Sklearn
Python數(shù)模筆記-NetworkX
Python數(shù)模筆記-模擬退火算法
2、用PuLP 庫(kù)求解線性規(guī)劃
2.1 問(wèn)題 1
(1)數(shù)學(xué)建模
問(wèn)題建模:
決策變量:
x1:甲飲料產(chǎn)量(單位:百箱)
x2:乙飲料產(chǎn)量(單位:百箱)
目標(biāo)函數(shù):
max fx = 10*x1 + 9*x2
約束條件:
6*x1 + 5*x2 <= 60
10*x1 + 20*x2 <= 150
取值范圍:
給定條件:x1, x2 >= 0,x1 <= 8
推導(dǎo)條件:由 x1,x2>=0 和 10*x1+20*x2<=150 可知:0<=x1<=15;0<=x2<=7.5
因此,0 <= x1<=8,0 <= x2<=7.5
(2)Python 編程
import pulp # 導(dǎo)入 pulp庫(kù)ProbLP1 = pulp.LpProblem("ProbLP1", sense=pulp.LpMaximize) # 定義問(wèn)題 1,求最大值x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Continuous') # 定義 x1x2 = pulp.LpVariable('x2', lowBound=0, upBound=7.5, cat='Continuous') # 定義 x2ProbLP1 += (10*x1 + 9*x2) # 設(shè)置目標(biāo)函數(shù) f(x)ProbLP1 += (6*x1 + 5*x2 <= 60) # 不等式約束ProbLP1 += (10*x1 + 20*x2 <= 150) # 不等式約束ProbLP1.solve()print(ProbLP1.name) # 輸出求解狀態(tài)print("Status:", pulp.LpStatus[ProbLP1.status]) # 輸出求解狀態(tài)for v in ProbLP1.variables():print(v.name, "=", v.varValue) # 輸出每個(gè)變量的最優(yōu)值print("F1(x)=", pulp.value(ProbLP1.objective)) # 輸出最優(yōu)解的目標(biāo)函數(shù)值# = 關(guān)注 Youcans,分享原創(chuàng)系列 https://blog.csdn.net/youcans =(3)運(yùn)行結(jié)果
ProbLP1 x1=6.4285714 x2=4.2857143 F1(X)=102.85714272.2 問(wèn)題 2
(1)數(shù)學(xué)建模
問(wèn)題建模:
決策變量:
x1:甲飲料產(chǎn)量(單位:百箱)
x2:乙飲料產(chǎn)量(單位:百箱)
x3:增加投資(單位:萬(wàn)元)
目標(biāo)函數(shù):
max fx = 10*x1 + 9*x2 - x3
約束條件:
6*x1 + 5*x2 <= 60 + x3/0.8
10*x1 + 20*x2 <= 150
取值范圍:
給定條件:x1, x2 >= 0,x1 <= 8
推導(dǎo)條件:由 x1,x2>=0 和 10*x1+20*x2<=150 可知:0<=x1<=15;0<=x2<=7.5
因此,0 <= x1<=8,0 <= x2<=7.5
(2)Python 編程
import pulp # 導(dǎo)入 pulp庫(kù)ProbLP2 = pulp.LpProblem("ProbLP2", sense=pulp.LpMaximize) # 定義問(wèn)題 2,求最大值x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Continuous') # 定義 x1x2 = pulp.LpVariable('x2', lowBound=0, upBound=7.5, cat='Continuous') # 定義 x2x3 = pulp.LpVariable('x3', cat='Continuous') # 定義 x3ProbLP2 += (10*x1 + 9*x2 - x3) # 設(shè)置目標(biāo)函數(shù) f(x)ProbLP2 += (6*x1 + 5*x2 - 1.25*x3 <= 60) # 不等式約束ProbLP2 += (10*x1 + 20*x2 <= 150) # 不等式約束ProbLP2.solve()print(ProbLP2.name) # 輸出求解狀態(tài)print("Status:", pulp.LpStatus[ProbLP2.status]) # 輸出求解狀態(tài)for v in ProbLP2.variables():print(v.name, "=", v.varValue) # 輸出每個(gè)變量的最優(yōu)值print("F2(x)=", pulp.value(ProbLP2.objective)) # 輸出最優(yōu)解的目標(biāo)函數(shù)值(3)運(yùn)行結(jié)果
ProbLP2 x1=8.0 x2=3.5 x3=4.4 F2(X)=107.12.3 問(wèn)題 3
(1)數(shù)學(xué)建模
問(wèn)題建模:
決策變量:
x1:甲飲料產(chǎn)量(單位:百箱)
x2:乙飲料產(chǎn)量(單位:百箱)
目標(biāo)函數(shù):
max fx = 11*x1 + 9*x2
約束條件:
6*x1 + 5*x2 <= 60
10*x1 + 20*x2 <= 150
取值范圍:
給定條件:x1, x2 >= 0,x1 <= 8
推導(dǎo)條件:由 x1,x2>=0 和 10*x1+20*x2<=150 可知:0<=x1<=15;0<=x2<=7.5
因此,0 <= x1<=8,0 <= x2<=7.5
(2)Python 編程
import pulp # 導(dǎo)入 pulp庫(kù)ProbLP3 = pulp.LpProblem("ProbLP3", sense=pulp.LpMaximize) # 定義問(wèn)題 3,求最大值x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Continuous') # 定義 x1x2 = pulp.LpVariable('x2', lowBound=0, upBound=7.5, cat='Continuous') # 定義 x2ProbLP3 += (11 * x1 + 9 * x2) # 設(shè)置目標(biāo)函數(shù) f(x)ProbLP3 += (6 * x1 + 5 * x2 <= 60) # 不等式約束ProbLP3 += (10 * x1 + 20 * x2 <= 150) # 不等式約束ProbLP3.solve()print(ProbLP3.name) # 輸出求解狀態(tài)print("Status:", pulp.LpStatus[ProbLP3.status]) # 輸出求解狀態(tài)for v in ProbLP3.variables():print(v.name, "=", v.varValue) # 輸出每個(gè)變量的最優(yōu)值print("F3(x) =", pulp.value(ProbLP3.objective)) # 輸出最優(yōu)解的目標(biāo)函數(shù)值(3)運(yùn)行結(jié)果
ProbLP3 x1=8.0 x2=2.4 F3(X) = 109.62.4 問(wèn)題 4
(1)數(shù)學(xué)建模
問(wèn)題建模:
決策變量:
x1:甲飲料產(chǎn)量(單位:百箱)
x2:乙飲料產(chǎn)量(單位:百箱)
x3:增加投資(單位:萬(wàn)元)
目標(biāo)函數(shù):
max fx = 11*x1 + 9*x2 - x3
約束條件:
6*x1 + 5*x2 <= 60 + x3/0.8
10*x1 + 20*x2 <= 150
取值范圍:
給定條件:x1, x2 >= 0,x1 <= 8
推導(dǎo)條件:由 x1,x2>=0 和 10*x1+20*x2<=150 可知:0<=x1<=15;0<=x2<=7.5
因此,0 <= x1<=8,0 <= x2<=7.5
(2)Python 編程
import pulp # 導(dǎo)入 pulp庫(kù) ProbLP4 = pulp.LpProblem("ProbLP4", sense=pulp.LpMaximize) # 定義問(wèn)題 2,求最大值x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Continuous') # 定義 x1x2 = pulp.LpVariable('x2', lowBound=0, upBound=7.5, cat='Continuous') # 定義 x2x3 = pulp.LpVariable('x3', cat='Continuous') # 定義 x3ProbLP4 += (11 * x1 + 9 * x2 - x3) # 設(shè)置目標(biāo)函數(shù) f(x)ProbLP4 += (6 * x1 + 5 * x2 - 1.25 * x3 <= 60) # 不等式約束ProbLP4 += (10 * x1 + 20 * x2 <= 150) # 不等式約束ProbLP4.solve()print(ProbLP4.name) # 輸出求解狀態(tài)print("Status:", pulp.LpStatus[ProbLP4.status]) # 輸出求解狀態(tài)for v in ProbLP4.variables():print(v.name, "=", v.varValue) # 輸出每個(gè)變量的最優(yōu)值print("F4(x) = ", pulp.value(ProbLP4.objective)) # 輸出最優(yōu)解的目標(biāo)函數(shù)值# = 關(guān)注 Youcans,分享原創(chuàng)系列 https://blog.csdn.net/youcans =(3)運(yùn)行結(jié)果
ProbLP4 x1=8.0 x2=3.5 x3=4.4 F4(X) = 115.12.5 問(wèn)題 5:整數(shù)規(guī)劃問(wèn)題
(1)數(shù)學(xué)建模
問(wèn)題建模:
決策變量:
x1:甲飲料產(chǎn)量,正整數(shù)(單位:百箱)
x2:乙飲料產(chǎn)量,正整數(shù)(單位:百箱)
目標(biāo)函數(shù):
max fx = 10*x1 + 9*x2
約束條件:
6*x1 + 5*x2 <= 60
10*x1 + 20*x2 <= 150
取值范圍:
給定條件:x1, x2 >= 0,x1 <= 8,x1, x2 為整數(shù)
推導(dǎo)條件:由 x1,x2>=0 和 10*x1+20*x2<=150 可知:0<=x1<=15;0<=x2<=7.5
因此,0 <= x1<=8,0 <= x2<=7
說(shuō)明:本題中要求飲料車輛為整百箱,即決策變量 x1,x2 為整數(shù),因此是整數(shù)規(guī)劃問(wèn)題。PuLP提供了整數(shù)規(guī)劃的
(2)Python 編程
import pulp # 導(dǎo)入 pulp庫(kù)ProbLP5 = pulp.LpProblem("ProbLP5", sense=pulp.LpMaximize) # 定義問(wèn)題 1,求最大值x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Integer') # 定義 x1,變量類型:整數(shù)x2 = pulp.LpVariable('x2', lowBound=0, upBound=7.5, cat='Integer') # 定義 x2,變量類型:整數(shù)ProbLP5 += (10 * x1 + 9 * x2) # 設(shè)置目標(biāo)函數(shù) f(x)ProbLP5 += (6 * x1 + 5 * x2 <= 60) # 不等式約束ProbLP5 += (10 * x1 + 20 * x2 <= 150) # 不等式約束ProbLP5.solve()print(ProbLP5.name) # 輸出求解狀態(tài)print("Status:", pulp.LpStatus[ProbLP5.status]) # 輸出求解狀態(tài)for v in ProbLP5.variables():print(v.name, "=", v.varValue) # 輸出每個(gè)變量的最優(yōu)值print("F5(x) =", pulp.value(ProbLP5.objective)) # 輸出最優(yōu)解的目標(biāo)函數(shù)值(3)運(yùn)行結(jié)果
ProbLP5 x1=8.0 x2=2.0 F5(X) = 98.0版權(quán)說(shuō)明:
YouCans 原創(chuàng)作品
Copyright 2021 YouCans, XUPT
Crated:2021-04-28
關(guān)注 Youcans,分享原創(chuàng)系列 https://blog.csdn.net/youcans
Python數(shù)模筆記-PuLP庫(kù)(1)線性規(guī)劃入門
Python數(shù)模筆記-PuLP庫(kù)(2)線性規(guī)劃進(jìn)階
Python數(shù)模筆記-PuLP庫(kù)(3)線性規(guī)劃實(shí)例
Python數(shù)模筆記-StatsModels 統(tǒng)計(jì)回歸(1)簡(jiǎn)介
Python數(shù)模筆記-StatsModels 統(tǒng)計(jì)回歸(2)線性回歸
Python數(shù)模筆記-StatsModels 統(tǒng)計(jì)回歸(3)模型數(shù)據(jù)的準(zhǔn)備
Python數(shù)模筆記-StatsModels 統(tǒng)計(jì)回歸(4)可視化
Python數(shù)模筆記-Sklearn (1)介紹
Python數(shù)模筆記-Sklearn (2)聚類分析
Python數(shù)模筆記-Sklearn (3)主成分分析
Python數(shù)模筆記-Sklearn (4)線性回歸
Python數(shù)模筆記-Sklearn (5)支持向量機(jī)
Python數(shù)模筆記-模擬退火算法(1)多變量函數(shù)優(yōu)化
Python數(shù)模筆記-模擬退火算法(2)約束條件的處理
Python數(shù)模筆記-模擬退火算法(3)整數(shù)規(guī)劃問(wèn)題
Python數(shù)模筆記-模擬退火算法(4)旅行商問(wèn)題
總結(jié)
以上是生活随笔為你收集整理的Python数模笔记-PuLP库(3)线性规划实例的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: 【OpenCV 例程200篇】08. 图
- 下一篇: youcans 的 OpenCV 学习课