python神经网络实例_Python编程实现的简单神经网络算法示例
本文實(shí)例講述了Python編程實(shí)現(xiàn)的簡單神經(jīng)網(wǎng)絡(luò)算法。分享給大家供大家參考,具體如下:
python實(shí)現(xiàn)二層神經(jīng)網(wǎng)絡(luò)
包括輸入層和輸出層
# -*- coding:utf-8 -*-
#! python2
import numpy as np
#sigmoid function
def nonlin(x, deriv = False):
if(deriv == True):
return x*(1-x)
return 1/(1+np.exp(-x))
#input dataset
x = np.array([[0,0,1],
[0,1,1],
[1,0,1],
[1,1,1]])
#output dataset
y = np.array([[0,0,1,1]]).T
np.random.seed(1)
#init weight value
syn0 = 2*np.random.random((3,1))-1
print "腳本之家測試結(jié)果:"
for iter in xrange(100000):
l0 = x #the first layer,and the input layer
l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the output layer
l1_error = y-l1
l1_delta = l1_error*nonlin(l1,True)
syn0 += np.dot(l0.T, l1_delta)
print "outout after Training:"
print l1
這里,
l0:輸入層
l1:輸出層
syn0:初始權(quán)值
l1_error:誤差
l1_delta:誤差校正系數(shù)
func nonlin:sigmoid函數(shù)
這里迭代次數(shù)為100時,預(yù)測結(jié)果為
迭代次數(shù)為1000時,預(yù)測結(jié)果為:
迭代次數(shù)為10000,預(yù)測結(jié)果為:
迭代次數(shù)為100000,預(yù)測結(jié)果為:
可見迭代次數(shù)越多,預(yù)測結(jié)果越接近理想值,當(dāng)時耗時也越長。
python實(shí)現(xiàn)三層神經(jīng)網(wǎng)絡(luò)
包括輸入層、隱含層和輸出層
# -*- coding:utf-8 -*-
#! python2
import numpy as np
def nonlin(x, deriv = False):
if(deriv == True):
return x*(1-x)
else:
return 1/(1+np.exp(-x))
#input dataset
X = np.array([[0,0,1],
[0,1,1],
[1,0,1],
[1,1,1]])
#output dataset
y = np.array([[0,1,1,0]]).T
syn0 = 2*np.random.random((3,4)) - 1 #the first-hidden layer weight value
syn1 = 2*np.random.random((4,1)) - 1 #the hidden-output layer weight value
print "腳本之家測試結(jié)果:"
for j in range(60000):
l0 = X #the first layer,and the input layer
l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the hidden layer
l2 = nonlin(np.dot(l1,syn1)) #the third layer,and the output layer
l2_error = y-l2 #the hidden-output layer error
if(j%10000) == 0:
print "Error:"+str(np.mean(l2_error))
l2_delta = l2_error*nonlin(l2,deriv = True)
l1_error = l2_delta.dot(syn1.T) #the first-hidden layer error
l1_delta = l1_error*nonlin(l1,deriv = True)
syn1 += l1.T.dot(l2_delta)
syn0 += l0.T.dot(l1_delta)
print "outout after Training:"
print l2
運(yùn)行結(jié)果:
希望本文所述對大家Python程序設(shè)計有所幫助。
總結(jié)
以上是生活随笔為你收集整理的python神经网络实例_Python编程实现的简单神经网络算法示例的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: dmo Java_java DMO及增删
- 下一篇: 如何有效开展小组教学_如何有效地开展小组