[云炬python3玩转机器学习笔记] 3-11Matplotlib数据可视化基础
生活随笔
收集整理的這篇文章主要介紹了
[云炬python3玩转机器学习笔记] 3-11Matplotlib数据可视化基础
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
matplotlib 基礎
In?[2]:
import matplotlib as mpl import matplotlib.pyplot as pltIn?[4]:
import numpy as np x=np.linspace(0, 10 ,100)In?[5]:
xOut[5]:
array([ 0. , 0.1010101 , 0.2020202 , 0.3030303 , 0.4040404 ,0.50505051, 0.60606061, 0.70707071, 0.80808081, 0.90909091,1.01010101, 1.11111111, 1.21212121, 1.31313131, 1.41414141,1.51515152, 1.61616162, 1.71717172, 1.81818182, 1.91919192,2.02020202, 2.12121212, 2.22222222, 2.32323232, 2.42424242,2.52525253, 2.62626263, 2.72727273, 2.82828283, 2.92929293,3.03030303, 3.13131313, 3.23232323, 3.33333333, 3.43434343,3.53535354, 3.63636364, 3.73737374, 3.83838384, 3.93939394,4.04040404, 4.14141414, 4.24242424, 4.34343434, 4.44444444,4.54545455, 4.64646465, 4.74747475, 4.84848485, 4.94949495,5.05050505, 5.15151515, 5.25252525, 5.35353535, 5.45454545,5.55555556, 5.65656566, 5.75757576, 5.85858586, 5.95959596,6.06060606, 6.16161616, 6.26262626, 6.36363636, 6.46464646,6.56565657, 6.66666667, 6.76767677, 6.86868687, 6.96969697,7.07070707, 7.17171717, 7.27272727, 7.37373737, 7.47474747,7.57575758, 7.67676768, 7.77777778, 7.87878788, 7.97979798,8.08080808, 8.18181818, 8.28282828, 8.38383838, 8.48484848,8.58585859, 8.68686869, 8.78787879, 8.88888889, 8.98989899,9.09090909, 9.19191919, 9.29292929, 9.39393939, 9.49494949,9.5959596 , 9.6969697 , 9.7979798 , 9.8989899 , 10. ])In?[6]:
y = np.sin(x)In?[7]:
yOut[7]:
array([ 0. , 0.10083842, 0.20064886, 0.2984138 , 0.39313661,0.48385164, 0.56963411, 0.64960951, 0.72296256, 0.78894546,0.84688556, 0.8961922 , 0.93636273, 0.96698762, 0.98775469,0.99845223, 0.99897117, 0.98930624, 0.96955595, 0.93992165,0.90070545, 0.85230712, 0.79522006, 0.73002623, 0.65739025,0.57805259, 0.49282204, 0.40256749, 0.30820902, 0.21070855,0.11106004, 0.01027934, -0.09060615, -0.19056796, -0.28858706,-0.38366419, -0.47483011, -0.56115544, -0.64176014, -0.7158225 ,-0.7825875 , -0.84137452, -0.89158426, -0.93270486, -0.96431712,-0.98609877, -0.99782778, -0.99938456, -0.99075324, -0.97202182,-0.94338126, -0.90512352, -0.85763861, -0.80141062, -0.73701276,-0.66510151, -0.58640998, -0.50174037, -0.41195583, -0.31797166,-0.22074597, -0.12126992, -0.0205576 , 0.0803643 , 0.18046693,0.27872982, 0.37415123, 0.46575841, 0.55261747, 0.63384295,0.7086068 , 0.77614685, 0.83577457, 0.8868821 , 0.92894843,0.96154471, 0.98433866, 0.99709789, 0.99969234, 0.99209556,0.97438499, 0.94674118, 0.90944594, 0.86287948, 0.8075165 ,0.74392141, 0.6727425 , 0.59470541, 0.51060568, 0.42130064,0.32770071, 0.23076008, 0.13146699, 0.03083368, -0.07011396,-0.17034683, -0.26884313, -0.36459873, -0.45663749, -0.54402111])In?[8]:
plt.plot(x, y)Out[8]:
[<matplotlib.lines.Line2D at 0x8ffddc4d90>]In?[10]:
plt.show()In?[11]:
cosy =np.cos(x)In?[12]:
cosy.shapeOut[12]:
(100,)In?[13]:
siny= y.copy()In?[15]:
plt.plot(x, siny) plt.plot(x, cosy)Out[15]:
[<matplotlib.lines.Line2D at 0x8ffe5adb50>]In?[16]:
plt.plot(x, siny) plt.plot(x, cosy,color="red")Out[16]:
[<matplotlib.lines.Line2D at 0x8ffe615850>]In?[17]:
plt.plot(x, siny) plt.plot(x, cosy,color="red",linestyle="--")Out[17]:
[<matplotlib.lines.Line2D at 0x8ffe6784f0>]In?[22]:
plt.plot(x, siny) plt.plot(x, cosy,color="red",linestyle="--") plt.xlim(-5, 15) plt.ylim(0,1.5)Out[22]:
(0.0, 1.5)In?[24]:
plt.plot(x, siny) plt.plot(x, cosy,color="red",linestyle="--") plt.axis([-1,11,-2,2])Out[24]:
(-1.0, 11.0, -2.0, 2.0)In?[28]:
plt.plot(x, siny, label="sin(x)") plt.plot(x, cosy,color="red",linestyle="--", label="cos(x)") plt.xlabel("x axis") plt.ylabel("y value ") plt.legend()Out[28]:
<matplotlib.legend.Legend at 0x8ffe569940>In?[31]:
plt.plot(x, siny, label="sin(x)") plt.plot(x, cosy,color="red",linestyle="--", label="cos(x)") plt.xlabel("x axis") plt.ylabel("y value") plt.title("Welcome to the ML World") #標題不支持中文? plt.legend()Out[31]:
<matplotlib.legend.Legend at 0x8ffe9984f0>Scattwe Plot
In?[33]:
plt.scatter(x, siny)Out[33]:
<matplotlib.collections.PathCollection at 0x8ffea17f70>In?[34]:
plt.scatter(x,siny) plt.scatter(x,cosy,color="red")Out[34]:
<matplotlib.collections.PathCollection at 0x8ffea8bb50>In?[38]:
x= np.random.normal(0,1,10000) y= np.random.normal(0,1,10000)plt.scatter(x,y,alpha=0.1)Out[38]:
<matplotlib.collections.PathCollection at 0x8fffbd2df0>In?[?]:
總結
以上是生活随笔為你收集整理的[云炬python3玩转机器学习笔记] 3-11Matplotlib数据可视化基础的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 一条来自 GitHub 重磅消息!
- 下一篇: 经典面试题(50):以下代码将输出的结果