Python Numpy 数组的初始化和基本操作
一.基礎:
Numpy的主要數據類型是ndarray,即多維數組。它有以下幾個屬性:
ndarray.ndim:數組的維數?
ndarray.shape:數組每一維的大小?
ndarray.size:數組中全部元素的數量?
ndarray.dtype:數組中元素的類型(numpy.int32, numpy.int16, and numpy.float64等)?
ndarray.itemsize:每個元素占幾個字節
例子:
>>> import numpy as np >>> a = np.arange(15).reshape(3, 5) >>> a array([[ 0, 1, 2, 3, 4],[ 5, 6, 7, 8, 9],[10, 11, 12, 13, 14]]) >>> a.shape (3, 5) >>> a.ndim 2 >>> a.dtype.name 'int64' >>> a.itemsize 8 >>> a.size 15 >>> type(a) <type 'numpy.ndarray'> >>> b = np.array([6, 7, 8]) >>> b array([6, 7, 8]) >>> type(b) <type 'numpy.ndarray'>- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
二.創建數組:
使用array函數講tuple和list轉為array:
>>> import numpy as np >>> a = np.array([2,3,4]) >>> a array([2, 3, 4]) >>> a.dtype dtype('int64') >>> b = np.array([1.2, 3.5, 5.1]) >>> b.dtype dtype('float64')- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
多維數組:
>>> b = np.array([(1.5,2,3), (4,5,6)]) >>> b array([[ 1.5, 2. , 3. ],[ 4. , 5. , 6. ]])- 1
- 2
- 3
- 4
生成數組的同時指定類型:
>>> c = np.array( [ [1,2], [3,4] ], dtype=complex ) >>> c array([[ 1.+0.j, 2.+0.j],[ 3.+0.j, 4.+0.j]])- 1
- 2
- 3
- 4
生成數組并賦為特殊值:?
ones:全1?
zeros:全0?
empty:隨機數,取決于內存情況
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
生成均勻分布的array:?
arange(最小值,最大值,步長)(左閉右開)?
linspace(最小值,最大值,元素數量)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
三.基本運算:
整個array按順序參與運算:
>>> a = np.array( [20,30,40,50] ) >>> b = np.arange( 4 ) >>> b array([0, 1, 2, 3]) >>> c = a-b >>> c array([20, 29, 38, 47]) >>> b**2 array([0, 1, 4, 9]) >>> 10*np.sin(a) array([ 9.12945251, -9.88031624, 7.4511316 , -2.62374854]) >>> a<35 array([ True, True, False, False], dtype=bool)- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
兩個二維使用*符號仍然是按位置一對一相乘,如果想表示矩陣乘法,使用dot:
>>> A = np.array( [[1,1], ... [0,1]] ) >>> B = np.array( [[2,0], ... [3,4]] ) >>> A*B # elementwise product array([[2, 0],[0, 4]]) >>> A.dot(B) # matrix product array([[5, 4],[3, 4]]) >>> np.dot(A, B) # another matrix product array([[5, 4],[3, 4]])- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
內置函數(min,max,sum),同時可以使用axis指定對哪一維進行操作:
>>> b = np.arange(12).reshape(3,4) >>> b array([[ 0, 1, 2, 3],[ 4, 5, 6, 7],[ 8, 9, 10, 11]]) >>> >>> b.sum(axis=0) # sum of each column array([12, 15, 18, 21]) >>> >>> b.min(axis=1) # min of each row array([0, 4, 8]) >>> >>> b.cumsum(axis=1) # cumulative sum along each row array([[ 0, 1, 3, 6],[ 4, 9, 15, 22],[ 8, 17, 27, 38]])- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
Numpy同時提供很多全局函數
>>> B = np.arange(3) >>> B array([0, 1, 2]) >>> np.exp(B) array([ 1. , 2.71828183, 7.3890561 ]) >>> np.sqrt(B) array([ 0. , 1. , 1.41421356]) >>> C = np.array([2., -1., 4.]) >>> np.add(B, C) array([ 2., 0., 6.])- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
四.尋址,索引和遍歷:
一維數組的遍歷語法和python list類似:
>>> a = np.arange(10)**3 >>> a array([ 0, 1, 8, 27, 64, 125, 216, 343, 512, 729]) >>> a[2] 8 >>> a[2:5] array([ 8, 27, 64]) >>> a[:6:2] = -1000 # equivalent to a[0:6:2] = -1000; from start to position 6, exclusive, set every 2nd element to -1000 >>> a array([-1000, 1, -1000, 27, -1000, 125, 216, 343, 512, 729]) >>> a[ : :-1] # reversed a array([ 729, 512, 343, 216, 125, -1000, 27, -1000, 1, -1000]) >>> for i in a: ... print(i**(1/3.)) ... nan 1.0 nan 3.0 nan 5.0 6.0 7.0 8.0 9.0- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
多維數組的訪問通過給每一維指定一個索引,順序是先高維再低維:
>>> def f(x,y): ... return 10*x+y ... >>> b = np.fromfunction(f,(5,4),dtype=int) >>> b array([[ 0, 1, 2, 3],[10, 11, 12, 13],[20, 21, 22, 23],[30, 31, 32, 33],[40, 41, 42, 43]]) >>> b[2,3] 23 >>> b[0:5, 1] # each row in the second column of b array([ 1, 11, 21, 31, 41]) >>> b[ : ,1] # equivalent to the previous example array([ 1, 11, 21, 31, 41]) >>> b[1:3, : ] # each column in the second and third row of b array([[10, 11, 12, 13],[20, 21, 22, 23]]) When fewer indices are provided than the number of axes, the missing indices are considered complete slices:>>> >>> b[-1] # the last row. Equivalent to b[-1,:] array([40, 41, 42, 43])- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
…符號表示將所有未指定索引的維度均賦為 : ,:在python中表示該維所有元素:
>>> c = np.array( [[[ 0, 1, 2], # a 3D array (two stacked 2D arrays) ... [ 10, 12, 13]], ... [[100,101,102], ... [110,112,113]]]) >>> c.shape (2, 2, 3) >>> c[1,...] # same as c[1,:,:] or c[1] array([[100, 101, 102],[110, 112, 113]]) >>> c[...,2] # same as c[:,:,2] array([[ 2, 13],[102, 113]])- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
遍歷:?
如果只想遍歷整個array可以直接使用:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
但是如果要對每個元素進行操作,就要使用flat屬性,這是一個遍歷整個數組的迭代器
>>> for element in b.flat: ... print(element) ... 0 1 2 3 10 11 12 13 20 21 22 23 30 31 32 33 40 41 42 43總結
以上是生活随笔為你收集整理的Python Numpy 数组的初始化和基本操作的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: memcache运行机制(转)
- 下一篇: 3-4:一个简单的HTTP服务器