原文地址:http://www.cnblogs.com/lion.net/p/3903197.html
目錄: 一、什么是Flume? 1)flume的特點 2)flume的可靠性 3)flume的可恢復性 4)flume 的 一些核心概念 二、flume的官方網站在哪里? 三、在哪里下載? 四、如何安裝? 五、flume的案例 1)案例1:Avro 2)案例2:Spool 3)案例3:Exec 4)案例4:Syslogtcp 5)案例5:JSONHandler 6)案例6:Hadoop sink 7)案例7:File Roll Sink 8)案例8:Replicating Channel Selector 9)案例9:Multiplexing Channel Selector 10)案例10:Flume Sink Processors 11)案例11:Load balancing Sink Processor 12)案例12:Hbase sink 一、什么是Flume? flume 作為 cloudera 開發的實時日志收集系統,受到了業界的認可與廣泛應用。Flume 初始的發行版本目前被統稱為 Flume OG(original generation),屬于 cloudera。但隨著 FLume 功能的擴展,Flume OG 代碼工程臃腫、核心組件設計不合理、核心配置不標準等缺點暴露出來,尤其是在 Flume OG 的最后一個發行版本 0.94.0 中,日志傳輸不穩定的現象尤為嚴重,為了解決這些問題,2011 年 10 月 22 號,cloudera 完成了 Flume-728,對 Flume 進行了里程碑式的改動:重構核心組件、核心配置以及代碼架構,重構后的版本統稱為 Flume NG(next generation);改動的另一原因是將 Flume 納入 apache 旗下,cloudera Flume 改名為 Apache Flume。
flume的特點: flume是一個分布式、可靠、和高可用的海量日志采集、聚合和傳輸的系統。支持在日志系統中定制各類數據發送方,用于收集數據;同時,Flume提供對數據進行簡單處理,并寫到各種數據接受方(比如文本、HDFS、Hbase等)的能力 。 flume的數據流由事件(Event)貫穿始終。事件是Flume的基本數據單位,它攜帶日志數據(字節數組形式)并且攜帶有頭信息,這些Event由Agent外部的Source生成,當Source捕獲事件后會進行特定的格式化,然后Source會把事件推入(單個或多個)Channel中。你可以把Channel看作是一個緩沖區,它將保存事件直到Sink處理完該事件。Sink負責持久化日志或者把事件推向另一個Source。
flume的可靠性? 當節點出現故障時,日志能夠被傳送到其他節點上而不會丟失。Flume提供了三種級別的可靠性保障,從強到弱依次分別為:end-to-end(收到數據agent首先將event寫到磁盤上,當數據傳送成功后,再刪除;如果數據發送失敗,可以重新發送。),Store on failure(這也是scribe采用的策略,當數據接收方crash時,將數據寫到本地,待恢復后,繼續發送),Besteffort(數據發送到接收方后,不會進行確認)。
flume的可恢復性: 還是靠Channel。推薦使用FileChannel,事件持久化在本地文件系統里(性能較差)。?
f lume的一些核心概念: Agent使用JVM 運行Flume。每臺機器運行一個agent,但是可以在一個agent中包含多個sources和sinks。 Client生產數據,運行在一個獨立的線程。 Source從Client收集數據,傳遞給Channel。 Sink從Channel收集數據,運行在一個獨立線程。 Channel連接 sources 和 sinks ,這個有點像一個隊列。 Events可以是日志記錄、 avro 對象等。 Flume以agent為最小的獨立運行單位。一個agent就是一個JVM。單agent由Source、Sink和Channel三大組件構成,如下圖:
?
值得注意的是,Flume提供了大量內置的Source、Channel和Sink類型。不同類型的Source,Channel和Sink可以自由組合。組合方式基于用戶設置的配置文件,非常靈活。比如:Channel可以把事件暫存在內存里,也可以持久化到本地硬盤上。Sink可以把日志寫入HDFS, HBase,甚至是另外一個Source等等。Flume支持用戶建立多級流,也就是說,多個agent可以協同工作,并且支持Fan-in、Fan-out、Contextual Routing、Backup Routes,這也正是NB之處 。 如下圖所示:
?
?
二、flume的官方網站在哪里? http://flume.apache.org/
?
三、在哪里下載?
http://www.apache.org/dyn/closer.cgi/flume/1.5.0/apache-flume-1.5.0-bin.tar.gz
?
四、如何安裝? 1)將下載的flume包,解壓到/home/hadoop目錄中,你就已經完成了50%:)簡單吧
2)修改 flume-env.sh 配置文件,主要是JAVA_HOME變量設置
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 root@m1:/home/hadoop/flume-1.5.0-bin# cp conf/flume-env.sh.template conf/flume-env.sh root@m1:/home/hadoop/flume-1.5.0-bin# vi conf/flume-env.sh # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements.? See the NOTICE file # distributed with this work for additional information # regarding copyright ownership.? The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License.? You may obtain a copy of the License at # #???? http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # If this file is placed at FLUME_CONF_DIR/flume-env.sh, it will be sourced # during Flume startup. # Enviroment variables can be set here. JAVA_HOME=/usr/lib/jvm/java-7-oracle # Give Flume more memory and pre-allocate, enable remote monitoring via JMX #JAVA_OPTS="-Xms100m -Xmx200m -Dcom.sun.management.jmxremote" # Note that the Flume conf directory is always included in the classpath. #FLUME_CLASSPATH=""
?
3)驗證是否安裝成功
1 2 3 4 5 6 7 root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng version Flume 1.5.0 Source code repository: https://git-wip-us.apache.org/repos/asf/flume.git Revision: 8633220df808c4cd0c13d1cf0320454a94f1ea97 Compiled by hshreedharan on Wed May? 7 14:49:18 PDT 2014 From source?with checksum a01fe726e4380ba0c9f7a7d222db961f root@m1:/home/hadoop#
出現上面的信息,表示安裝成功了
五、flume的案例 1)案例1:Avro Avro可以發送一個給定的文件給Flume,Avro 源使用AVRO RPC機制。 a)創建agent配置文件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 root@m1:/home/hadoop#vi /home/hadoop/flume-1.5.0-bin/conf/avro.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type?= avro a1.sources.r1.channels = c1 a1.sources.r1.bind = 0.0.0.0 a1.sources.r1.port = 4141 # Describe the sink a1.sinks.k1.type?= logger # Use a channel which buffers events in memory a1.channels.c1.type?= memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
b)啟動flume agent a1
1 root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/avro.conf -n a1 -Dflume.root.logger=INFO,console
c)創建指定文件
1 root@m1:/home/hadoop# echo "hello world" > /home/hadoop/flume-1.5.0-bin/log.00
d)使用avro-client發送文件
1 root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng avro-client -c . -H m1 -p 4141 -F /home/hadoop/flume-1.5.0-bin/log.00
f)在m1的控制臺,可以看到以下信息,注意最后一行:
1 2 3 4 5 6 7 8 9 10 root@m1:/home/hadoop/flume-1.5.0-bin/conf# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/avro.conf -n a1 -Dflume.root.logger=INFO,console Info: Sourcing environment configuration script /home/hadoop/flume-1.5.0-bin/conf/flume-env.sh Info: Including Hadoop libraries found via (/home/hadoop/hadoop-2.2.0/bin/hadoop) for?HDFS access Info: Excluding /home/hadoop/hadoop-2.2.0/share/hadoop/common/lib/slf4j-api-1.7.5.jar from classpath Info: Excluding /home/hadoop/hadoop-2.2.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar from classpath ... 2014-08-10 10:43:25,112 (New I/O??worker #1) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.handleUpstream(NettyServer.java:171)] [id: 0x92464c4f, /192.168.1.50:59850 :> /192.168.1.50:4141] UNBOUND 2014-08-10 10:43:25,112 (New I/O??worker #1) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.handleUpstream(NettyServer.java:171)] [id: 0x92464c4f, /192.168.1.50:59850 :> /192.168.1.50:4141] CLOSED 2014-08-10 10:43:25,112 (New I/O??worker #1) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.channelClosed(NettyServer.java:209)] Connection to /192.168.1.50:59850 disconnected. 2014-08-10 10:43:26,718 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 68 65 6C 6C 6F 20 77 6F 72 6C 64??????????????? hello world }
? 2)案例2:Spool Spool監測配置的目錄下新增的文件,并將文件中的數據讀取出來。需要注意兩點:
1) 拷貝到spool目錄下的文件不可以再打開編輯。
2) spool目錄下不可包含相應的子目錄 a)創建agent配置文件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/spool.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type?= spooldir a1.sources.r1.channels = c1 a1.sources.r1.spoolDir = /home/hadoop/flume-1.5.0-bin/logs a1.sources.r1.fileHeader = true # Describe the sink a1.sinks.k1.type?= logger # Use a channel which buffers events in memory a1.channels.c1.type?= memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
b)啟動flume agent a1
1 root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/spool.conf -n a1 -Dflume.root.logger=INFO,console
c)追加文件到/home/hadoop/flume-1.5.0-bin/logs目錄
1 root@m1:/home/hadoop# echo "spool test1" > /home/hadoop/flume-1.5.0-bin/logs/spool_text.log
d)在m1的控制臺,可以看到以下相關信息:
1 2 3 4 5 6 7 8 9 10 11 14/08/10?11:37:13 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown. 14/08/10?11:37:13 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown. 14/08/10?11:37:14 INFO avro.ReliableSpoolingFileEventReader: Preparing to move file?/home/hadoop/flume-1.5.0-bin/logs/spool_text.log to /home/hadoop/flume-1.5.0-bin/logs/spool_text.log.COMPLETED 14/08/10?11:37:14 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown. 14/08/10?11:37:14 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown. 14/08/10?11:37:14 INFO sink.LoggerSink: Event: { headers:{file=/home/hadoop/flume-1.5.0-bin/logs/spool_text.log} body: 73 70 6F 6F 6C 20 74 65 73 74 31??????????????? spool test1 } 14/08/10?11:37:15 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown. 14/08/10?11:37:15 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown. 14/08/10?11:37:16 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown. 14/08/10?11:37:16 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown. 14/08/10?11:37:17 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown.
? 3)案例3:Exec EXEC
執行一個給定的命令獲得輸出的源,如果要使用tail命令,必選使得file足夠大才能看到輸出內容 ? a)創建agent配置文件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/exec_tail.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type?= exec a1.sources.r1.channels = c1 a1.sources.r1.command?= tail?-F /home/hadoop/flume-1.5.0-bin/log_exec_tail # Describe the sink a1.sinks.k1.type?= logger # Use a channel which buffers events in memory a1.channels.c1.type?= memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
b)啟動flume agent a1
1 root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/exec_tail.conf -n a1 -Dflume.root.logger=INFO,console
c)生成足夠多的內容在文件里
1 root@m1:/home/hadoop# for i in {1..100};do echo "exec tail$i" >> /home/hadoop/flume-1.5.0-bin/log_exec_tail;echo $i;sleep 0.1;done
e)在m1的控制臺,可以看到以下信息:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 2014-08-10 10:59:25,513 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 20 74 65 73 74?????? exec?tail?test?} 2014-08-10 10:59:34,535 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 20 74 65 73 74?????? exec?tail?test?} 2014-08-10 11:01:40,557 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 31?????????????????? exec?tail1 } 2014-08-10 11:01:41,180 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 32?????????????????? exec?tail2 } 2014-08-10 11:01:41,180 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 33?????????????????? exec?tail3 } 2014-08-10 11:01:41,181 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 34?????????????????? exec?tail4 } 2014-08-10 11:01:41,181 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 35?????????????????? exec?tail5 } 2014-08-10 11:01:41,181 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 36?????????????????? exec?tail6 } .... .... .... 2014-08-10 11:01:51,550 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 36??????????????? exec?tail96 } 2014-08-10 11:01:51,550 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 37??????????????? exec?tail97 } 2014-08-10 11:01:51,551 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 38??????????????? exec?tail98 } 2014-08-10 11:01:51,551 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 39??????????????? exec?tail99 } 2014-08-10 11:01:51,551 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 31 30 30???????????? exec?tail100 }
? 4)案例4:Syslogtcp Syslogtcp監聽TCP的端口做為數據源 a)創建agent配置文件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/syslog_tcp.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type?= syslogtcp a1.sources.r1.port = 5140 a1.sources.r1.host = localhost a1.sources.r1.channels = c1 # Describe the sink a1.sinks.k1.type?= logger # Use a channel which buffers events in memory a1.channels.c1.type?= memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
b)啟動flume agent a1
1 root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/syslog_tcp.conf -n a1 -Dflume.root.logger=INFO,console
c)測試產生syslog
1 root@m1:/home/hadoop# echo "hello idoall.org syslog" | nc localhost 5140
d)在m1的控制臺,可以看到以下信息:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 14/08/10?11:41:45 INFO node.PollingPropertiesFileConfigurationProvider: Reloading configuration file:/home/hadoop/flume-1.5.0-bin/conf/syslog_tcp.conf 14/08/10?11:41:45 INFO conf.FlumeConfiguration: Added sinks: k1 Agent: a1 14/08/10?11:41:45 INFO conf.FlumeConfiguration: Processing:k1 14/08/10?11:41:45 INFO conf.FlumeConfiguration: Processing:k1 14/08/10?11:41:45 INFO conf.FlumeConfiguration: Post-validation flume configuration contains configuration for?agents: [a1] 14/08/10?11:41:45 INFO node.AbstractConfigurationProvider: Creating channels 14/08/10?11:41:45 INFO channel.DefaultChannelFactory: Creating instance of channel c1 type?memory 14/08/10?11:41:45 INFO node.AbstractConfigurationProvider: Created channel c1 14/08/10?11:41:45 INFO source.DefaultSourceFactory: Creating instance of source?r1, type?syslogtcp 14/08/10?11:41:45 INFO sink.DefaultSinkFactory: Creating instance of sink: k1, type: logger 14/08/10?11:41:45 INFO node.AbstractConfigurationProvider: Channel c1 connected to [r1, k1] 14/08/10?11:41:45 INFO node.Application: Starting new configuration:{ sourceRunners:{r1=EventDrivenSourceRunner: { source:org.apache.flume.source.SyslogTcpSource{name:r1,state:IDLE} }} sinkRunners:{k1=SinkRunner: { policy:org.apache.flume.sink.DefaultSinkProcessor@6538b14 counterGroup:{ name:null counters:{} } }} channels:{c1=org.apache.flume.channel.MemoryChannel{name: c1}} } 14/08/10?11:41:45 INFO node.Application: Starting Channel c1 14/08/10?11:41:45 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for?type: CHANNEL, name: c1: Successfully registered new MBean. 14/08/10?11:41:45 INFO instrumentation.MonitoredCounterGroup: Component type: CHANNEL, name: c1 started 14/08/10?11:41:45 INFO node.Application: Starting Sink k1 14/08/10?11:41:45 INFO node.Application: Starting Source r1 14/08/10?11:41:45 INFO source.SyslogTcpSource: Syslog TCP Source starting... 14/08/10?11:42:15 WARN source.SyslogUtils: Event created from Invalid Syslog data. 14/08/10?11:42:15 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 68 65 6C 6C 6F 20 69 64 6F 61 6C 6C 2E 6F 72 67 hello idoall.org }
? 5)案例5:JSONHandler a)創建agent配置文件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/post_json.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type?= org.apache.flume.source.http.HTTPSource a1.sources.r1.port = 8888 a1.sources.r1.channels = c1 # Describe the sink a1.sinks.k1.type?= logger # Use a channel which buffers events in memory a1.channels.c1.type?= memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
b)啟動flume agent a1
1 root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/post_json.conf -n a1 -Dflume.root.logger=INFO,console
c)生成JSON 格式的POST request
1 root@m1:/home/hadoop# curl -X POST -d '[{ "headers" :{"a" : "a1","b" : "b1"},"body" : "idoall.org_body"}]' http://localhost:8888
d)在m1的控制臺,可以看到以下信息:
1 2 3 4 5 6 7 8 9 10 11 14/08/10?11:49:59 INFO node.Application: Starting Channel c1 14/08/10?11:49:59 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for?type: CHANNEL, name: c1: Successfully registered new MBean. 14/08/10?11:49:59 INFO instrumentation.MonitoredCounterGroup: Component type: CHANNEL, name: c1 started 14/08/10?11:49:59 INFO node.Application: Starting Sink k1 14/08/10?11:49:59 INFO node.Application: Starting Source r1 14/08/10?11:49:59 INFO mortbay.log: Logging to org.slf4j.impl.Log4jLoggerAdapter(org.mortbay.log) via org.mortbay.log.Slf4jLog 14/08/10?11:49:59 INFO mortbay.log: jetty-6.1.26 14/08/10?11:50:00 INFO mortbay.log: Started SelectChannelConnector@0.0.0.0:8888 14/08/10?11:50:00 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for?type: SOURCE, name: r1: Successfully registered new MBean. 14/08/10?11:50:00 INFO instrumentation.MonitoredCounterGroup: Component type: SOURCE, name: r1 started 14/08/10?12:14:32 INFO sink.LoggerSink: Event: { headers:{b=b1, a=a1} body: 69 64 6F 61 6C 6C 2E 6F 72 67 5F 62 6F 64 79??? idoall.org_body }
? 6)案例6:Hadoop sink 其中關于hadoop2.2.0部分的安裝部署,請參考文章《ubuntu12.04+hadoop2.2.0+zookeeper3.4.5+hbase0.96.2+hive0.13.1分布式環境部署》 a)創建agent配置文件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/hdfs_sink.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type?= syslogtcp a1.sources.r1.port = 5140 a1.sources.r1.host = localhost a1.sources.r1.channels = c1 # Describe the sink a1.sinks.k1.type?= hdfs a1.sinks.k1.channel = c1 a1.sinks.k1.hdfs.path = hdfs://m1:9000/user/flume/syslogtcp a1.sinks.k1.hdfs.filePrefix = Syslog a1.sinks.k1.hdfs.round = true a1.sinks.k1.hdfs.roundValue = 10 a1.sinks.k1.hdfs.roundUnit = minute # Use a channel which buffers events in memory a1.channels.c1.type?= memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
b)啟動flume agent a1
1 root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/hdfs_sink.conf -n a1 -Dflume.root.logger=INFO,console
c)測試產生syslog
1 root@m1:/home/hadoop# echo "hello idoall flume -> hadoop testing one" | nc localhost 5140
d)在m1的控制臺,可以看到以下信息:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 14/08/10?12:20:39 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for?type: CHANNEL, name: c1: Successfully registered new MBean. 14/08/10?12:20:39 INFO instrumentation.MonitoredCounterGroup: Component type: CHANNEL, name: c1 started 14/08/10?12:20:39 INFO node.Application: Starting Sink k1 14/08/10?12:20:39 INFO node.Application: Starting Source r1 14/08/10?12:20:39 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for?type: SINK, name: k1: Successfully registered new MBean. 14/08/10?12:20:39 INFO instrumentation.MonitoredCounterGroup: Component type: SINK, name: k1 started 14/08/10?12:20:39 INFO source.SyslogTcpSource: Syslog TCP Source starting... 14/08/10?12:21:46 WARN source.SyslogUtils: Event created from Invalid Syslog data. 14/08/10?12:21:49 INFO hdfs.HDFSSequenceFile: writeFormat = Writable, UseRawLocalFileSystem = false 14/08/10?12:21:49 INFO hdfs.BucketWriter: Creating hdfs://m1:9000/user/flume/syslogtcp//Syslog.1407644509504.tmp 14/08/10?12:22:20 INFO hdfs.BucketWriter: Closing hdfs://m1:9000/user/flume/syslogtcp//Syslog.1407644509504.tmp 14/08/10?12:22:20 INFO hdfs.BucketWriter: Close tries incremented 14/08/10?12:22:20 INFO hdfs.BucketWriter: Renaming hdfs://m1:9000/user/flume/syslogtcp/Syslog.1407644509504.tmp to hdfs://m1:9000/user/flume/syslogtcp/Syslog.1407644509504 14/08/10?12:22:20 INFO hdfs.HDFSEventSink: Writer callback called.
e)在m1上再打開一個窗口,去hadoop上檢查文件是否生成
1 2 3 4 5 root@m1:/home/hadoop# /home/hadoop/hadoop-2.2.0/bin/hadoop fs -ls /user/flume/syslogtcp Found 1 items -rw-r--r--?? 3 root supergroup??????? 155 2014-08-10 12:22 /user/flume/syslogtcp/Syslog.1407644509504 root@m1:/home/hadoop# /home/hadoop/hadoop-2.2.0/bin/hadoop fs -cat /user/flume/syslogtcp/Syslog.1407644509504 SEQ!org.apache.hadoop.io.LongWritable"org.apache.hadoop.io.BytesWritable^;>Gv$hello idoall flume -> hadoop testing one
7)案例7:File Roll Sink a)創建agent配置文件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/file_roll.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type?= syslogtcp a1.sources.r1.port = 5555 a1.sources.r1.host = localhost a1.sources.r1.channels = c1 # Describe the sink a1.sinks.k1.type?= file_roll a1.sinks.k1.sink.directory = /home/hadoop/flume-1.5.0-bin/logs # Use a channel which buffers events in memory a1.channels.c1.type?= memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
b)啟動flume agent a1
1 root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/file_roll.conf -n a1 -Dflume.root.logger=INFO,console
c)測試產生log
1 2 root@m1:/home/hadoop# echo "hello idoall.org syslog" | nc localhost 5555 root@m1:/home/hadoop# echo "hello idoall.org syslog 2" | nc localhost 5555
d)查看/home/hadoop/flume-1.5.0-bin/logs下是否生成文件,默認每30秒生成一個新文件
1 2 3 4 5 6 7 8 9 10 root@m1:/home/hadoop# ll /home/hadoop/flume-1.5.0-bin/logs 總用量 272 drwxr-xr-x 3 root root?? 4096 Aug 10 12:50 ./ drwxr-xr-x 9 root root?? 4096 Aug 10 10:59 ../ -rw-r--r-- 1 root root???? 50 Aug 10 12:49 1407646164782-1 -rw-r--r-- 1 root root????? 0 Aug 10 12:49 1407646164782-2 -rw-r--r-- 1 root root????? 0 Aug 10 12:50 1407646164782-3 root@m1:/home/hadoop# cat /home/hadoop/flume-1.5.0-bin/logs/1407646164782-1 /home/hadoop/flume-1.5.0-bin/logs/1407646164782-2 hello idoall.org syslog hello idoall.org syslog 2
? 8)案例8:Replicating Channel Selector Flume支持Fan out流從一個源到多個通道。有兩種模式的Fan out,分別是復制和復用。在復制的情況下,流的事件被發送到所有的配置通道。在復用的情況下,事件被發送到可用的渠道中的一個子集。Fan out流需要指定源和Fan out通道的規則。 ? 這次我們需要用到m1,m2兩臺機器 ? a)在m1創建replicating_Channel_Selector配置文件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf a1.sources = r1 a1.sinks = k1 k2 a1.channels = c1 c2 # Describe/configure the source a1.sources.r1.type?= syslogtcp a1.sources.r1.port = 5140 a1.sources.r1.host = localhost a1.sources.r1.channels = c1 c2 a1.sources.r1.selector.type?= replicating # Describe the sink a1.sinks.k1.type?= avro a1.sinks.k1.channel = c1 a1.sinks.k1.hostname?= m1 a1.sinks.k1.port = 5555 a1.sinks.k2.type?= avro a1.sinks.k2.channel = c2 a1.sinks.k2.hostname?= m2 a1.sinks.k2.port = 5555 # Use a channel which buffers events in memory a1.channels.c1.type?= memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 a1.channels.c2.type?= memory a1.channels.c2.capacity = 1000 a1.channels.c2.transactionCapacity = 100
b)在m1創建replicating_Channel_Selector_avro配置文件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type?= avro a1.sources.r1.channels = c1 a1.sources.r1.bind = 0.0.0.0 a1.sources.r1.port = 5555 # Describe the sink a1.sinks.k1.type?= logger # Use a channel which buffers events in memory a1.channels.c1.type?= memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
c)在m1上將2個配置文件復制到m2上一份
1 2 root@m1:/home/hadoop/flume-1.5.0-bin# scp -r /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf root@m1:/home/hadoop/flume-1.5.0-bin# scp -r /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf<br>
d)打開4個窗口,在m1和m2上同時啟動兩個flume agent
1 2 root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf -n a1 -Dflume.root.logger=INFO,console root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf -n a1 -Dflume.root.logger=INFO,console
e)然后在m1或m2的任意一臺機器上,測試產生syslog
1 root@m1:/home/hadoop# echo "hello idoall.org syslog" | nc localhost 5140
f)在m1和m2的sink窗口,分別可以看到以下信息,這說明信息得到了同步:
1 2 3 4 5 6 7 8 14/08/10?14:08:18 INFO ipc.NettyServer: Connection to /192.168.1.51:46844 disconnected. 14/08/10?14:08:52 INFO ipc.NettyServer: [id: 0x90f8fe1f, /192.168.1.50:35873 => /192.168.1.50:5555] OPEN 14/08/10?14:08:52 INFO ipc.NettyServer: [id: 0x90f8fe1f, /192.168.1.50:35873 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555 14/08/10?14:08:52 INFO ipc.NettyServer: [id: 0x90f8fe1f, /192.168.1.50:35873 => /192.168.1.50:5555] CONNECTED: /192.168.1.50:35873 14/08/10?14:08:59 INFO ipc.NettyServer: [id: 0xd6318635, /192.168.1.51:46858 => /192.168.1.50:5555] OPEN 14/08/10?14:08:59 INFO ipc.NettyServer: [id: 0xd6318635, /192.168.1.51:46858 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555 14/08/10?14:08:59 INFO ipc.NettyServer: [id: 0xd6318635, /192.168.1.51:46858 => /192.168.1.50:5555] CONNECTED: /192.168.1.51:46858 14/08/10?14:09:20 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 68 65 6C 6C 6F 20 69 64 6F 61 6C 6C 2E 6F 72 67 hello idoall.org }
? 9)案例9:Multiplexing Channel Selector a)在m1創建Multiplexing_Channel_Selector配置文件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf a1.sources = r1 a1.sinks = k1 k2 a1.channels = c1 c2 # Describe/configure the source a1.sources.r1.type?= org.apache.flume.source.http.HTTPSource a1.sources.r1.port = 5140 a1.sources.r1.channels = c1 c2 a1.sources.r1.selector.type?= multiplexing a1.sources.r1.selector.header = type #映射允許每個值通道可以重疊。默認值可以包含任意數量的通道。 a1.sources.r1.selector.mapping.baidu = c1 a1.sources.r1.selector.mapping.ali = c2 a1.sources.r1.selector.default = c1 # Describe the sink a1.sinks.k1.type?= avro a1.sinks.k1.channel = c1 a1.sinks.k1.hostname?= m1 a1.sinks.k1.port = 5555 a1.sinks.k2.type?= avro a1.sinks.k2.channel = c2 a1.sinks.k2.hostname?= m2 a1.sinks.k2.port = 5555 # Use a channel which buffers events in memory a1.channels.c1.type?= memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 a1.channels.c2.type?= memory a1.channels.c2.capacity = 1000 a1.channels.c2.transactionCapacity = 100
b)在m1創建Multiplexing_Channel_Selector_avro配置文件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type?= avro a1.sources.r1.channels = c1 a1.sources.r1.bind = 0.0.0.0 a1.sources.r1.port = 5555 # Describe the sink a1.sinks.k1.type?= logger # Use a channel which buffers events in memory a1.channels.c1.type?= memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
c)將2個配置文件復制到m2上一份
1 2 root@m1:/home/hadoop/flume-1.5.0-bin# scp -r /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf? root@m2:/home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf root@m1:/home/hadoop/flume-1.5.0-bin# scp -r /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf
d)打開4個窗口,在m1和m2上同時啟動兩個flume agent
1 2 root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf -n a1 -Dflume.root.logger=INFO,console root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf -n a1 -Dflume.root.logger=INFO,console
e)然后在m1或m2的任意一臺機器上,測試產生syslog
1 root@m1:/home/hadoop# curl -X POST -d '[{ "headers" :{"type" : "baidu"},"body" : "idoall_TEST1"}]' http://localhost:5140 && curl -X POST -d '[{ "headers" :{"type" : "ali"},"body" : "idoall_TEST2"}]' http://localhost:5140 && curl -X POST -d '[{ "headers" :{"type" : "qq"},"body" : "idoall_TEST3"}]' http://localhost:5140
f)在m1的sink窗口,可以看到以下信息:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 14/08/10?14:32:21 INFO node.Application: Starting Sink k1 14/08/10?14:32:21 INFO node.Application: Starting Source r1 14/08/10?14:32:21 INFO source.AvroSource: Starting Avro source?r1: { bindAddress: 0.0.0.0, port: 5555 }... 14/08/10?14:32:21 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for?type: SOURCE, name: r1: Successfully registered new MBean. 14/08/10?14:32:21 INFO instrumentation.MonitoredCounterGroup: Component type: SOURCE, name: r1 started 14/08/10?14:32:21 INFO source.AvroSource: Avro source?r1 started. 14/08/10?14:32:36 INFO ipc.NettyServer: [id: 0xcf00eea6, /192.168.1.50:35916 => /192.168.1.50:5555] OPEN 14/08/10?14:32:36 INFO ipc.NettyServer: [id: 0xcf00eea6, /192.168.1.50:35916 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555 14/08/10?14:32:36 INFO ipc.NettyServer: [id: 0xcf00eea6, /192.168.1.50:35916 => /192.168.1.50:5555] CONNECTED: /192.168.1.50:35916 14/08/10?14:32:44 INFO ipc.NettyServer: [id: 0x432f5468, /192.168.1.51:46945 => /192.168.1.50:5555] OPEN 14/08/10?14:32:44 INFO ipc.NettyServer: [id: 0x432f5468, /192.168.1.51:46945 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555 14/08/10?14:32:44 INFO ipc.NettyServer: [id: 0x432f5468, /192.168.1.51:46945 => /192.168.1.50:5555] CONNECTED: /192.168.1.51:46945 14/08/10?14:34:11 INFO sink.LoggerSink: Event: { headers:{type=baidu} body: 69 64 6F 61 6C 6C 5F 54 45 53 54 31???????????? idoall_TEST1 } 14/08/10?14:34:57 INFO sink.LoggerSink: Event: { headers:{type=qq} body: 69 64 6F 61 6C 6C 5F 54 45 53 54 33???????????? idoall_TEST3 }
g)在m2的sink窗口,可以看到以下信息:
1 2 3 4 5 6 7 8 9 10 11 12 13 14/08/10?14:32:27 INFO node.Application: Starting Sink k1 14/08/10?14:32:27 INFO node.Application: Starting Source r1 14/08/10?14:32:27 INFO source.AvroSource: Starting Avro source?r1: { bindAddress: 0.0.0.0, port: 5555 }... 14/08/10?14:32:27 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for?type: SOURCE, name: r1: Successfully registered new MBean. 14/08/10?14:32:27 INFO instrumentation.MonitoredCounterGroup: Component type: SOURCE, name: r1 started 14/08/10?14:32:27 INFO source.AvroSource: Avro source?r1 started. 14/08/10?14:32:36 INFO ipc.NettyServer: [id: 0x7c2f0aec, /192.168.1.50:38104 => /192.168.1.51:5555] OPEN 14/08/10?14:32:36 INFO ipc.NettyServer: [id: 0x7c2f0aec, /192.168.1.50:38104 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555 14/08/10?14:32:36 INFO ipc.NettyServer: [id: 0x7c2f0aec, /192.168.1.50:38104 => /192.168.1.51:5555] CONNECTED: /192.168.1.50:38104 14/08/10?14:32:44 INFO ipc.NettyServer: [id: 0x3d36f553, /192.168.1.51:48599 => /192.168.1.51:5555] OPEN 14/08/10?14:32:44 INFO ipc.NettyServer: [id: 0x3d36f553, /192.168.1.51:48599 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555 14/08/10?14:32:44 INFO ipc.NettyServer: [id: 0x3d36f553, /192.168.1.51:48599 => /192.168.1.51:5555] CONNECTED: /192.168.1.51:48599 14/08/10?14:34:33 INFO sink.LoggerSink: Event: { headers:{type=ali} body: 69 64 6F 61 6C 6C 5F 54 45 53 54 32???????????? idoall_TEST2 }
可以看到,根據header中不同的條件分布到不同的channel上
? 10)案例10:Flume Sink Processors failover的機器是一直發送給其中一個sink,當這個sink不可用的時候,自動發送到下一個sink。 a)在m1創建Flume_Sink_Processors配置文件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf a1.sources = r1 a1.sinks = k1 k2 a1.channels = c1 c2 #這個是配置failover的關鍵,需要有一個sink group a1.sinkgroups = g1 a1.sinkgroups.g1.sinks = k1 k2 #處理的類型是failover a1.sinkgroups.g1.processor.type?= failover #優先級,數字越大優先級越高,每個sink的優先級必須不相同 a1.sinkgroups.g1.processor.priority.k1 = 5 a1.sinkgroups.g1.processor.priority.k2 = 10 #設置為10秒,當然可以根據你的實際狀況更改成更快或者很慢 a1.sinkgroups.g1.processor.maxpenalty = 10000 # Describe/configure the source a1.sources.r1.type?= syslogtcp a1.sources.r1.port = 5140 a1.sources.r1.channels = c1 c2 a1.sources.r1.selector.type?= replicating # Describe the sink a1.sinks.k1.type?= avro a1.sinks.k1.channel = c1 a1.sinks.k1.hostname?= m1 a1.sinks.k1.port = 5555 a1.sinks.k2.type?= avro a1.sinks.k2.channel = c2 a1.sinks.k2.hostname?= m2 a1.sinks.k2.port = 5555 # Use a channel which buffers events in memory a1.channels.c1.type?= memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 a1.channels.c2.type?= memory a1.channels.c2.capacity = 1000 a1.channels.c2.transactionCapacity = 100
b)在m1創建Flume_Sink_Processors_avro配置文件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type?= avro a1.sources.r1.channels = c1 a1.sources.r1.bind = 0.0.0.0 a1.sources.r1.port = 5555 # Describe the sink a1.sinks.k1.type?= logger # Use a channel which buffers events in memory a1.channels.c1.type?= memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
c)將2個配置文件復制到m2上一份
1 2 root@m1:/home/hadoop/flume-1.5.0-bin# scp -r /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf? root@m2:/home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf root@m1:/home/hadoop/flume-1.5.0-bin# scp -r /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf
d)打開4個窗口,在m1和m2上同時啟動兩個flume agent
1 2 root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf -n a1 -Dflume.root.logger=INFO,console root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf -n a1 -Dflume.root.logger=INFO,console
e)然后在m1或m2的任意一臺機器上,測試產生log
1 root@m1:/home/hadoop# echo "idoall.org test1 failover" | nc localhost 5140
f)因為m2的優先級高,所以在m2的sink窗口,可以看到以下信息,而m1沒有:
1 2 3 4 5 14/08/10?15:02:46 INFO ipc.NettyServer: Connection to /192.168.1.51:48692 disconnected. 14/08/10?15:03:12 INFO ipc.NettyServer: [id: 0x09a14036, /192.168.1.51:48704 => /192.168.1.51:5555] OPEN 14/08/10?15:03:12 INFO ipc.NettyServer: [id: 0x09a14036, /192.168.1.51:48704 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555 14/08/10?15:03:12 INFO ipc.NettyServer: [id: 0x09a14036, /192.168.1.51:48704 => /192.168.1.51:5555] CONNECTED: /192.168.1.51:48704 14/08/10?15:03:26 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 31 idoall.org test1 }
g)這時我們停止掉m2機器上的sink(ctrl+c),再次輸出測試數據:
1 root@m1:/home/hadoop# echo "idoall.org test2 failover" | nc localhost 5140
h)可以在m1的sink窗口,看到讀取到了剛才發送的兩條測試數據:
1 2 3 4 5 6 14/08/10?15:02:46 INFO ipc.NettyServer: Connection to /192.168.1.51:47036 disconnected. 14/08/10?15:03:12 INFO ipc.NettyServer: [id: 0xbcf79851, /192.168.1.51:47048 => /192.168.1.50:5555] OPEN 14/08/10?15:03:12 INFO ipc.NettyServer: [id: 0xbcf79851, /192.168.1.51:47048 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555 14/08/10?15:03:12 INFO ipc.NettyServer: [id: 0xbcf79851, /192.168.1.51:47048 => /192.168.1.50:5555] CONNECTED: /192.168.1.51:47048 14/08/10?15:07:56 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 31 idoall.org test1 } 14/08/10?15:07:56 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 32 idoall.org test2 }
i)我們再在m2的sink窗口中,啟動sink:
1 root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf -n a1 -Dflume.root.logger=INFO,console
j)輸入兩批測試數據:
1 root@m1:/home/hadoop# echo "idoall.org test3 failover" | nc localhost 5140 && echo "idoall.org test4 failover" | nc localhost 5140
k)在m2的sink窗口,我們可以看到以下信息,因為優先級的關系,log消息會再次落到m2上:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14/08/10?15:09:47 INFO node.Application: Starting Sink k1 14/08/10?15:09:47 INFO node.Application: Starting Source r1 14/08/10?15:09:47 INFO source.AvroSource: Starting Avro source?r1: { bindAddress: 0.0.0.0, port: 5555 }... 14/08/10?15:09:47 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for?type: SOURCE, name: r1: Successfully registered new MBean. 14/08/10?15:09:47 INFO instrumentation.MonitoredCounterGroup: Component type: SOURCE, name: r1 started 14/08/10?15:09:47 INFO source.AvroSource: Avro source?r1 started. 14/08/10?15:09:54 INFO ipc.NettyServer: [id: 0x96615732, /192.168.1.51:48741 => /192.168.1.51:5555] OPEN 14/08/10?15:09:54 INFO ipc.NettyServer: [id: 0x96615732, /192.168.1.51:48741 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555 14/08/10?15:09:54 INFO ipc.NettyServer: [id: 0x96615732, /192.168.1.51:48741 => /192.168.1.51:5555] CONNECTED: /192.168.1.51:48741 14/08/10?15:09:57 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 32 idoall.org test2 } 14/08/10?15:10:43 INFO ipc.NettyServer: [id: 0x12621f9a, /192.168.1.50:38166 => /192.168.1.51:5555] OPEN 14/08/10?15:10:43 INFO ipc.NettyServer: [id: 0x12621f9a, /192.168.1.50:38166 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555 14/08/10?15:10:43 INFO ipc.NettyServer: [id: 0x12621f9a, /192.168.1.50:38166 => /192.168.1.51:5555] CONNECTED: /192.168.1.50:38166 14/08/10?15:10:43 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 33 idoall.org test3 } 14/08/10?15:10:43 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 34 idoall.org test4 }
11)案例11:Load balancing Sink Processor load balance type和failover不同的地方是,load balance有兩個配置,一個是輪詢,一個是隨機。兩種情況下如果被選擇的sink不可用,就會自動嘗試發送到下一個可用的sink上面。 a)在m1創建Load_balancing_Sink_Processors配置文件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf a1.sources = r1 a1.sinks = k1 k2 a1.channels = c1 #這個是配置Load balancing的關鍵,需要有一個sink group a1.sinkgroups = g1 a1.sinkgroups.g1.sinks = k1 k2 a1.sinkgroups.g1.processor.type?= load_balance a1.sinkgroups.g1.processor.backoff = true a1.sinkgroups.g1.processor.selector = round_robin # Describe/configure the source a1.sources.r1.type?= syslogtcp a1.sources.r1.port = 5140 a1.sources.r1.channels = c1 # Describe the sink a1.sinks.k1.type?= avro a1.sinks.k1.channel = c1 a1.sinks.k1.hostname?= m1 a1.sinks.k1.port = 5555 a1.sinks.k2.type?= avro a1.sinks.k2.channel = c1 a1.sinks.k2.hostname?= m2 a1.sinks.k2.port = 5555 # Use a channel which buffers events in memory a1.channels.c1.type?= memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100
b)在m1創建Load_balancing_Sink_Processors_avro配置文件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type?= avro a1.sources.r1.channels = c1 a1.sources.r1.bind = 0.0.0.0 a1.sources.r1.port = 5555 # Describe the sink a1.sinks.k1.type?= logger # Use a channel which buffers events in memory a1.channels.c1.type?= memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
c)將2個配置文件復制到m2上一份
1 2 root@m1:/home/hadoop/flume-1.5.0-bin# scp -r /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf? root@m2:/home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf root@m1:/home/hadoop/flume-1.5.0-bin# scp -r /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf
d)打開4個窗口,在m1和m2上同時啟動兩個flume agent
1 2 root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf -n a1 -Dflume.root.logger=INFO,console root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf -n a1 -Dflume.root.logger=INFO,console
e)然后在m1或m2的任意一臺機器上,測試產生log,一行一行輸入,輸入太快,容易落到一臺機器上
1 2 3 4 root@m1:/home/hadoop# echo "idoall.org test1" | nc localhost 5140 root@m1:/home/hadoop# echo "idoall.org test2" | nc localhost 5140 root@m1:/home/hadoop# echo "idoall.org test3" | nc localhost 5140 root@m1:/home/hadoop# echo "idoall.org test4" | nc localhost 5140
f)在m1的sink窗口,可以看到以下信息:
1 2 14/08/10?15:35:29 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 32 idoall.org test2 } 14/08/10?15:35:33 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 34 idoall.org test4 }
g)在m2的sink窗口,可以看到以下信息:
1 2 14/08/10?15:35:27 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 31 idoall.org test1 } 14/08/10?15:35:29 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 33 idoall.org test3 }
說明輪詢模式起到了作用。
12)案例12:Hbase sink ? a)在測試之前,請先參考《ubuntu12.04+hadoop2.2.0+zookeeper3.4.5+hbase0.96.2+hive0.13.1分布式環境部署》將hbase啟動 b)然后將以下文件復制到flume中:
1 2 3 4 5 6 7 8 cp?/home/hadoop/hbase-0.96.2-hadoop2/lib/protobuf-java-2.5.0.jar /home/hadoop/flume-1.5.0-bin/lib cp?/home/hadoop/hbase-0.96.2-hadoop2/lib/hbase-client-0.96.2-hadoop2.jar /home/hadoop/flume-1.5.0-bin/lib cp?/home/hadoop/hbase-0.96.2-hadoop2/lib/hbase-common-0.96.2-hadoop2.jar /home/hadoop/flume-1.5.0-bin/lib cp?/home/hadoop/hbase-0.96.2-hadoop2/lib/hbase-protocol-0.96.2-hadoop2.jar /home/hadoop/flume-1.5.0-bin/lib cp?/home/hadoop/hbase-0.96.2-hadoop2/lib/hbase-server-0.96.2-hadoop2.jar /home/hadoop/flume-1.5.0-bin/lib cp?/home/hadoop/hbase-0.96.2-hadoop2/lib/hbase-hadoop2-compat-0.96.2-hadoop2.jar /home/hadoop/flume-1.5.0-bin/lib cp?/home/hadoop/hbase-0.96.2-hadoop2/lib/hbase-hadoop-compat-0.96.2-hadoop2.jar /home/hadoop/flume-1.5.0-bin/lib@@@ cp?/home/hadoop/hbase-0.96.2-hadoop2/lib/htrace-core-2.04.jar /home/hadoop/flume-1.5.0-bin/lib
c)確保test_idoall_org表在hbase中已經存在,test_idoall_org表的格式以及字段請參考《ubuntu12.04+hadoop2.2.0+zookeeper3.4.5+hbase0.96.2+hive0.13.1分布式環境部署》中關于hbase部分的建表代碼。 d)在m1創建hbase_simple配置文件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/hbase_simple.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type?= syslogtcp a1.sources.r1.port = 5140 a1.sources.r1.host = localhost a1.sources.r1.channels = c1 # Describe the sink a1.sinks.k1.type?= logger a1.sinks.k1.type?= hbase a1.sinks.k1.table = test_idoall_org a1.sinks.k1.columnFamily = name a1.sinks.k1.column = idoall a1.sinks.k1.serializer =? org.apache.flume.sink.hbase.RegexHbaseEventSerializer a1.sinks.k1.channel = memoryChannel # Use a channel which buffers events in memory a1.channels.c1.type?= memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
e)啟動flume agent
1 /home/hadoop/flume-1.5.0-bin/bin/flume-ng?agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/hbase_simple.conf -n a1 -Dflume.root.logger=INFO,console
f)測試產生syslog
1 root@m1:/home/hadoop# echo "hello idoall.org from flume" | nc localhost 5140
g)這時登錄到hbase中,可以發現新數據已經插入
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 root@m1:/home/hadoop# /home/hadoop/hbase-0.96.2-hadoop2/bin/hbase shell 2014-08-10 16:09:48,984 INFO? [main] Configuration.deprecation: hadoop.native.lib is deprecated. Instead, use io.native.lib.available HBase Shell; enter 'help<RETURN>'?for?list of supported commands. Type "exit<RETURN>"?to leave the HBase Shell Version 0.96.2-hadoop2, r1581096, Mon Mar 24 16:03:18 PDT 2014 hbase(main):001:0> list TABLE????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in?[jar:file:/home/hadoop/hbase-0.96.2-hadoop2/lib/slf4j-log4j12-1.6.4.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in?[jar:file:/home/hadoop/hadoop-2.2.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. hbase2hive_idoall????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? hive2hbase_idoall????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? test_idoall_org??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 3 row(s) in?2.6880 seconds => ["hbase2hive_idoall", "hive2hbase_idoall", "test_idoall_org"] hbase(main):002:0> scan "test_idoall_org" ROW??????????????????????????????????????????????????? COLUMN+CELL???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? ?10086???????????????????????????????????????????????? column=name:idoall, timestamp=1406424831473, value=idoallvalue????????????????????????????????????????????????????????????????????????????????????????????????? 1 row(s) in?0.0550 seconds hbase(main):003:0> scan "test_idoall_org" ROW??????????????????????????????????????????????????? COLUMN+CELL???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? ?10086???????????????????????????????????????????????? column=name:idoall, timestamp=1406424831473, value=idoallvalue????????????????????????????????????????????????????????????????????????????????????????????????? ?1407658495588-XbQCOZrKK8-0??????????????????????????? column=name:payload, timestamp=1407658498203, value=hello idoall.org from flume???????????????????????????????????????????????????????????????????????????????? 2 row(s) in?0.0200 seconds hbase(main):004:0> quit
經過這么多flume的例子測試,如果你全部做完后,會發現flume的功能真的很強大,可以進行各種搭配來完成你想要的工作,俗話說師傅領進門,修行在個人,如何能夠結合你的產品業務,將flume更好的應用起來,快去動手實踐吧。
轉載于:https://www.cnblogs.com/AloneSword/p/4875126.html
總結
以上是生活随笔 為你收集整理的Flume1.5.0的安装、部署、简单应用(含伪分布式、与hadoop2.2.0、hbase0.96的案例) 的全部內容,希望文章能夠幫你解決所遇到的問題。
如果覺得生活随笔 網站內容還不錯,歡迎將生活随笔 推薦給好友。