UA MATH564 概率分布1 二项分布上
UA MATH564 概率分布1 二項分布上
- Bernoulli分布
- 二項分布
- 二項分布的定義
- 二項分布的性質
Bernoulli分布
Bernoulli分布用來描述Bernoulli試驗的結果,Bernoulli試驗指的是只有兩種可能的結果的隨機試驗,比如明天是否下雨、新生兒是男孩還是女孩。用XXX表示Bernoulli試驗的結果,X=1X=1X=1表示試驗成功,X=0X=0X=0表示試驗失敗,記X~Ber(p)X\sim Ber(p)X~Ber(p),則
P(X=1)=p,P(X=0)=1?pP(X = 1) = p,\ \ P(X=0)=1-pP(X=1)=p,??P(X=0)=1?p
性質1 EXr=pEX^r=pEXr=p,Var(X)=p(1?p)Var(X)=p(1-p)Var(X)=p(1?p)
證明
EXr=0r×(1?p)+1r×p=pVar(X)=p?p2=p(1?p)EX^r = 0^r \times (1-p) + 1^r \times p = p \\ Var(X) = p - p^2 = p(1-p)EXr=0r×(1?p)+1r×p=pVar(X)=p?p2=p(1?p)
性質2 MX(t)=(1?p)+petM_X(t) = (1-p)+pe^tMX?(t)=(1?p)+pet
證明
MX(t)=E[etX]=e0(1?p)+etp=1?p+petM_X(t) = E[e^{tX}] = e^{0}(1-p) + e^{t}p = 1-p+pe^tMX?(t)=E[etX]=e0(1?p)+etp=1?p+pet
二項分布
二項分布的定義
將Bernoulli試驗獨立重復的nnn次,記XXX為成功的次數,則XXX服從二項分布,記為X~Binom(n,p)X \sim Binom(n,p)X~Binom(n,p),
P(X=k)=Cnkpk(1?p)n?k,k=0,1,?,nP(X = k) = C_n^k p^k(1-p)^{n-k},k=0,1,\cdots,nP(X=k)=Cnk?pk(1?p)n?k,k=0,1,?,n
二項分布的歸一性由二項式定理給出,因此得名二項分布,
∑k=0nCnkpk(1?p)n?k=(p+(1?p))n=1\sum_{k=0}^n C_n^k p^k(1-p)^{n-k} = (p+(1-p))^n = 1k=0∑n?Cnk?pk(1?p)n?k=(p+(1?p))n=1
另一種定義二項分布的辦法是用Bernoulli分布和,記Y1,?,YnY_1,\cdots,Y_nY1?,?,Yn?表示這nnn次Bernoulli試驗的結果,則
X=Y1+Y2+?+Yn~Binom(n,p)X = Y_1 + Y_2 + \cdots + Y_n \sim Binom(n,p)X=Y1?+Y2?+?+Yn?~Binom(n,p)
二項分布的性質
性質1 EX=npEX = npEX=np,Var(X)=np(1?p)Var(X)=np(1-p)Var(X)=np(1?p)
證明見概率論系列的離散型隨機變量那一篇。
性質2 EXr=∑j=1rS2(r,j)(n)jpjEX^r = \sum_{j=1}^r S_2(r,j)(n)_jp^jEXr=∑j=1r?S2?(r,j)(n)j?pj
證明
假設fff是定義在R\mathbb{R}R上的函數,引入位移算子LLL與有限差算子Δ\DeltaΔ,Lmf(x)=f(x+m)L^mf(x)=f(x+m)Lmf(x)=f(x+m),Δf(x)=f(x+1)?f(x)=(L?1)f(x)\Delta f(x)=f(x+1)-f(x)=(L-1)f(x)Δf(x)=f(x+1)?f(x)=(L?1)f(x),根據這個關系可以計算
Δmf(x)=(L?1)mf(x)=∑j=0m(?1)jCmjf(x+m?j)Lmf(x)=(1+Δ)mf(x)=∑j=0mCmjΔjf(x)\Delta^m f(x) = (L-1)^m f(x) = \sum_{j=0}^m (-1)^jC_m^j f(x+m-j) \\ L^m f(x) = (1+\Delta)^m f(x) = \sum_{j=0}^m C_m^j \Delta^j f(x)Δmf(x)=(L?1)mf(x)=j=0∑m?(?1)jCmj?f(x+m?j)Lmf(x)=(1+Δ)mf(x)=j=0∑m?Cmj?Δjf(x)
所以
EXr=∑j=0nCnjpj(1?p)n?jjr=∑j=0nCnjpj(1?p)n?jLj0r=(1?p+pL)n0r=(1+Δ)n0r=∑j=1nCnjpjΔj0r=∑j=1rCnjpjΔj0r=∑j=1rS2(r,j)(n)jpjEX^r = \sum_{j=0}^{n} C_n^jp^j (1-p)^{n-j} j^r = \sum_{j=0}^{n} C_n^jp^j (1-p)^{n-j} L^j 0^r \\ = (1-p+pL)^n 0^r = (1+\Delta)^n 0^r = \sum_{j=1}^{n} C_n^jp^j\Delta^j0^r \\ = \sum_{j=1}^{r} C_n^jp^j\Delta^j0^r = \sum_{j=1}^{r} S_2(r,j)(n)_jp^jEXr=j=0∑n?Cnj?pj(1?p)n?jjr=j=0∑n?Cnj?pj(1?p)n?jLj0r=(1?p+pL)n0r=(1+Δ)n0r=j=1∑n?Cnj?pjΔj0r=j=1∑r?Cnj?pjΔj0r=j=1∑r?S2?(r,j)(n)j?pj
先說明一下(1+Δ)n(1+\Delta)^n(1+Δ)n的第一項,它是1nΔ00r=01^n\Delta^00^r = 01nΔ00r=0;再說明一下倒數第二個等號:
考慮取f(x)=xnf(x)=x^nf(x)=xn,
Δmxn=∑j=0m(?1)jCmj(x+m?j)n\Delta^m x^n = \sum_{j=0}^m (-1)^jC_m^j(x+m-j)^nΔmxn=j=0∑m?(?1)jCmj?(x+m?j)n
令x=0x=0x=0,
Δm0n=∑j=0m(?1)jCmj(m?j)n=∑j=0m(?1)m?jCmjjn\Delta^m 0^n = \sum_{j=0}^m (-1)^jC_m^j(m-j)^n = \sum_{j=0}^m (-1)^{m-j}C_m^jj^n Δm0n=j=0∑m?(?1)jCmj?(m?j)n=j=0∑m?(?1)m?jCmj?jn
因此m>nm>nm>n時,Δm0n=0\Delta^m 0^n=0Δm0n=0;最后說明一下倒數第一個等號,第二類Stirling數有一個性質:
xn=∑j=0nS2(n,j)(x)jx^n = \sum_{j=0}^n S_2(n,j)(x)_jxn=j=0∑n?S2?(n,j)(x)j?
所以
Δmxn=∑j=0nS2(n,j)Δm(x)j=∑j=0nS2(n,j)(j)m(x)j?m\Delta^m x^n = \sum_{j=0}^n S_2(n,j) \Delta^m(x)_j = \sum_{j=0}^n S_2(n,j) (j)_m (x)_{j-m}Δmxn=j=0∑n?S2?(n,j)Δm(x)j?=j=0∑n?S2?(n,j)(j)m?(x)j?m?
取x=0x=0x=0,
Δmxn=S2(n,m)m!\Delta^m x^n = S_2(n,m)m!Δmxn=S2?(n,m)m!
性質3 二項分布的偏度和峰度為
γ1=1?2pnp(1?p),γ2=1?6p(1?p)np(1?p)\gamma_1 = \frac{1-2p}{\sqrt{np(1-p)}},\ \ \gamma_2 = \frac{1-6p(1-p)}{np(1-p)}γ1?=np(1?p)?1?2p?,??γ2?=np(1?p)1?6p(1?p)?
證明
γ1=E(X?npnp(1?p))3=1(np(1?p))3(EX3?3npEX2+3n2p2EX?n3p3)EX2=∑j=12S2(2,j)(n)jpj=np+n(n?1)p2EX3=∑j=13S2(3,j)(n)jpj=np+3n(n?1)p2+n(n?1)(n?2)p3EX3?3npEX2+3n2p2EX?n3p3=np(1?2p)(1?p)γ2=E(X?npnp(1?p))4?3\gamma_1 = E \left( \frac{X-np}{\sqrt{np(1-p)}} \right)^3 = \frac{1}{\sqrt{(np(1-p))^3}} (EX^3 - 3npEX^2 + 3n^2p^2EX - n^3p^3) \\ EX^2 =\sum_{j=1}^2S_2(2,j)(n)_jp^j = np + n(n-1)p^2 \\ EX^3 = \sum_{j=1}^3S_2(3,j)(n)_jp^j = np + 3n(n-1)p^2 + n(n-1)(n-2)p^3 \\ EX^3 - 3npEX^2 + 3n^2p^2EX - n^3p^3=np(1-2p)(1-p) \\ \gamma_2 = E \left( \frac{X-np}{\sqrt{np(1-p)}} \right)^4 - 3 γ1?=E(np(1?p)?X?np?)3=(np(1?p))3?1?(EX3?3npEX2+3n2p2EX?n3p3)EX2=j=1∑2?S2?(2,j)(n)j?pj=np+n(n?1)p2EX3=j=1∑3?S2?(3,j)(n)j?pj=np+3n(n?1)p2+n(n?1)(n?2)p3EX3?3npEX2+3n2p2EX?n3p3=np(1?2p)(1?p)γ2?=E(np(1?p)?X?np?)4?3只需計算EX4EX^4EX4帶入即可
EX4=∑j=14S2(4,j)(n)jpj=np+7(n)2p2+6(n)3p3+(n)4p4EX^4 = \sum_{j=1}^4S_2(4,j)(n)_jp^j = np + 7(n)_2p^2 + 6(n)_3p^3 + (n)_4p^4EX4=j=1∑4?S2?(4,j)(n)j?pj=np+7(n)2?p2+6(n)3?p3+(n)4?p4
性質4 二項分布的矩母函數為MX(t)=(1?p+pet)nM_X(t) = (1-p+pe^t)^nMX?(t)=(1?p+pet)n
證明
MX(t)=E[etX]=∑i=0netiCnipi(1?p)n?i=∑i=0nCni(pet)i(1?p)n?i=MX(t)=(1?p+pet)nM_X(t) = E[e^{tX}] = \sum_{i=0}^n e^{ti}C_n^i p^i (1-p)^{n-i} =\sum_{i=0}^n C_n^i (pe^t)^i (1-p)^{n-i} = M_X(t) = (1-p+pe^t)^nMX?(t)=E[etX]=i=0∑n?etiCni?pi(1?p)n?i=i=0∑n?Cni?(pet)i(1?p)n?i=MX?(t)=(1?p+pet)n
性質5 二項分布的分布函數B(x;n,p)B(x;n,p)B(x;n,p)可以用不完全Beta函數IpI_pIp?表示,
B(x;n,p)=1?Ip([x]+1,n?[x]),0≤x≤nB(x;n,p) = 1-I_p([x]+1,n-[x]),\ 0 \le x \le nB(x;n,p)=1?Ip?([x]+1,n?[x]),?0≤x≤n
證明
B(x;n,p)=∑k=0min([x],n)Cnkpk(1?p)n?kB(x;n,p) = \sum_{k=0}^{min([x],n)} C_n^k p^k (1-p)^{n-k}B(x;n,p)=k=0∑min([x],n)?Cnk?pk(1?p)n?k
先引入幾個特殊函數,Gamma函數,
Γ(a)=∫0+∞ta?1e?tdt,a>0\Gamma(a) = \int_{0}^{+\infty} t^{a-1}e^{-t}dt,a>0Γ(a)=∫0+∞?ta?1e?tdt,a>0
它是階乘到實數域的推廣;Beta函數,
B(a,b)=∫01ya?1(1?y)b?1dy,a>0,b>0B(a,b) = \int_{0}^1 y^{a-1}(1-y)^{b-1}dy,a>0,b>0B(a,b)=∫01?ya?1(1?y)b?1dy,a>0,b>0
它是組合數到實數域的推廣,
B(a,b)=Γ(a)Γ(b)Γ(a+b)B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}B(a,b)=Γ(a+b)Γ(a)Γ(b)?
不完全Beta函數,
Bx(a,b)=∫0xya?1(1?y)b?1dy,0<x<1B_x(a,b) = \int_{0}^x y^{a-1}(1-y)^{b-1}dy,0<x<1Bx?(a,b)=∫0x?ya?1(1?y)b?1dy,0<x<1
不完全Beta函數比,
Ix(a,b)=Bx(a,b)B(a,b)I_x(a,b) = \frac{B_x(a,b)}{B(a,b)}Ix?(a,b)=B(a,b)Bx?(a,b)?
接下來證明二項分布的分布函數可以用不完全Beta函數表示。計算(按分部積分,把yxy^xyx放入微分中)
Bp(x+1,n?x)=∫0pyx(1?y)n?x?1dy=1x+1px+1(1?q)n?x?1+n?x?1x+1∫0p(1?y)n?x?2y1+xdy=1x+1px+1(1?q)n?x?1+n?x?1x+1Bp(x+1,n?x?1)B_p(x+1,n-x) = \int_0^p y^x (1-y)^{n-x-1}dy \\ = \frac{1}{x+1}p^{x+1}(1-q)^{n-x-1} + \frac{n-x-1}{x+1}\int_0^p (1-y)^{n-x-2}y^{1+x}dy \\ = \frac{1}{x+1}p^{x+1}(1-q)^{n-x-1} + \frac{n-x-1}{x+1}B_p(x+1,n-x-1)Bp?(x+1,n?x)=∫0p?yx(1?y)n?x?1dy=x+11?px+1(1?q)n?x?1+x+1n?x?1?∫0p?(1?y)n?x?2y1+xdy=x+11?px+1(1?q)n?x?1+x+1n?x?1?Bp?(x+1,n?x?1)
根據這個遞推關系可以確定不完全beta函數滿足:
Bp(x+1,n?x)=B(x+1,n?x)[1?B(x;n,p)]B_p(x+1,n-x) = B(x+1,n-x)[1-B(x;n,p)]Bp?(x+1,n?x)=B(x+1,n?x)[1?B(x;n,p)]
總結
以上是生活随笔為你收集整理的UA MATH564 概率分布1 二项分布上的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: UA MATH566 统计理论1 充分统
- 下一篇: UA MATH564 概率论IV 次序统