UA OPTI570 量子力学17 创生算符与湮灭算符
UA OPTI570 量子力學17 創生算符與湮滅算符
- 湮滅算符
- 創生算符
- 階梯算符的特征方程
假設[A^,A^?]=1^[\hat A,\hat A^{\dag}]=\hat 1[A^,A^?]=1^,構造
N^=A^?A^\hat N = \hat A^{\dag} \hat AN^=A^?A^
這一篇嘗試得到N^\hat NN^的特征方程N^∣n?=n∣n?\hat N|n \rangle=n|n\rangleN^∣n?=n∣n?,以及A^,A^?\hat A,\hat A^{\dag}A^,A^?對N^\hat NN^的本征態的作用。通常稱A^?\hat A^{\dag}A^?為創生算符(creation operator),稱A^\hat AA^為湮滅算符(annihilation operator),二者合稱階梯算符(ladder operators)。
因為[A^,A^?][\hat A,\hat A^{\dag}][A^,A^?]是恒等算符,通常認為這是無量綱的,所以A^\hat AA^應該是無量綱的算符,那么相應的,N^\hat NN^也是無量綱的算符。并且A^\hat AA^不能是厄爾米特算符,否則[A^,A^?][\hat A,\hat A^{\dag}][A^,A^?]就會是零算符了,但
N^?=(A^?A^)?=A^?A^=N^\hat N^{\dag} = (\hat A^{\dag}\hat A)^{\dag} = \hat A^{\dag}\hat A = \hat NN^?=(A^?A^)?=A^?A^=N^
因此N^\hat NN^是厄爾米特算符,它的特征值全都是實數,并且全部是非負實數。
湮滅算符
先做一些初步計算
N^∣n?=n∣n?=A^?A^∣n?=A^?∣ψ?\hat N|n \rangle=n|n\rangle=\hat A^{\dag}\hat A|n \rangle = \hat A^{\dag} |\psi \rangleN^∣n?=n∣n?=A^?A^∣n?=A^?∣ψ?
這里定義∣ψ?=A^∣n?|\psi \rangle=\hat A |n \rangle∣ψ?=A^∣n?,驗證它的模是否為1:
?ψ∣ψ?=?n∣A^?A^∣n?=?n∣N^∣n?=n?n∣n?=n∈R+\begin{aligned} \langle \psi | \psi \rangle = \langle n | \hat A ^{\dag} \hat A | n \rangle =\langle n | \hat N| n \rangle=n\langle n | n \rangle = n \in \mathbb{R}^+\end{aligned}?ψ∣ψ?=?n∣A^?A^∣n?=?n∣N^∣n?=n?n∣n?=n∈R+?
也就是說∣ψ?|\psi \rangle∣ψ?并沒有標準化。
前文提到n≥0n \ge 0n≥0,如果000是N^\hat NN^的特征值,假設它對應的特征右矢為∣0?|0 \rangle∣0?,則根據標準化條件?0∣0?=1\langle 0| 0 \rangle=1?0∣0?=1,而根據∣ψ?|\psi \rangle∣ψ?的計算,
?0∣A^?A^∣0?=(A^∣0?,A^∣0?)=0?A^∣0?=0\langle 0 | \hat A ^{\dag} \hat A | 0 \rangle =(\hat A | 0 \rangle,\hat A | 0 \rangle) = 0 \Rightarrow \hat A | 0 \rangle = 0?0∣A^?A^∣0?=(A^∣0?,A^∣0?)=0?A^∣0?=0
如果n>0n>0n>0,則
N^∣ψ?=A^?A^∣ψ?=A^?A^A^∣n?\hat N|\psi \rangle = \hat A^{\dag} \hat A |\psi \rangle = \hat A ^{\dag} \hat A \hat A |n \rangleN^∣ψ?=A^?A^∣ψ?=A^?A^A^∣n?
因為[A^,A^?]=A^A^??A^?A^=1^[\hat A,\hat A^{\dag}]=\hat A \hat A^{\dag}-\hat A^{\dag}\hat A = \hat 1[A^,A^?]=A^A^??A^?A^=1^,可以把A^?A^\hat A^{\dag} \hat AA^?A^替換為A^A^??1^\hat A \hat A^{\dag}-\hat 1A^A^??1^,
A^?A^A^∣n?=(A^A^??1^)A^∣n?=A^A^?A^∣n??A^∣n?=A^N^∣n??A^∣n?=A^n∣n??A^∣n?=(n?1)A^∣n?\hat A ^{\dag} \hat A \hat A |n \rangle = (\hat A \hat A^{\dag}-\hat 1)\hat A | n \rangle = \hat A \hat A^{\dag} \hat A | n \rangle - \hat A | n \rangle \\ = \hat A \hat N | n \rangle - \hat A | n \rangle = \hat A n | n \rangle - \hat A | n \rangle = (n-1)\hat A | n \rangleA^?A^A^∣n?=(A^A^??1^)A^∣n?=A^A^?A^∣n??A^∣n?=A^N^∣n??A^∣n?=A^n∣n??A^∣n?=(n?1)A^∣n?
這說明∣ψ?∈span(∣n?1?)|\psi \rangle \in span(|n-1 \rangle)∣ψ?∈span(∣n?1?),假設?c∈C\exists c \in \mathbb{C}?c∈C使得∣ψ?=c∣n?1?|\psi \rangle=c|n-1 \rangle∣ψ?=c∣n?1?,根據標準化條件
?ψ∣ψ?=?n∣A^?A^∣n?=∣c∣2?n?1∣n?1?=∣c∣2=n>0\langle \psi | \psi \rangle = \langle n | \hat A ^{\dag} \hat A | n \rangle = |c|^2 \langle n-1|n-1 \rangle = |c|^2 = n>0?ψ∣ψ?=?n∣A^?A^∣n?=∣c∣2?n?1∣n?1?=∣c∣2=n>0
那么為了簡便起見,可以取c=nc= \sqrt{n}c=n?。綜上,
∣ψ?={n∣n?1?,n>00,n=0|\psi \rangle = \begin{cases} \sqrt{n}|n-1 \rangle , n> 0 \\ 0, n = 0 \end{cases}∣ψ?={n?∣n?1?,n>00,n=0?
要使∣n?1?|n-1\rangle∣n?1?存在,需要n?1≥0n-1 \ge 0n?1≥0,并且nnn為整數,否則不停重復上述過程總會得到?1<n?1<0-1<n-1<0?1<n?1<0的情況,比如n=1.2n=1.2n=1.2,則與A^\hat AA^作用一次后,本征態成為∣0.2?|0.2 \rangle∣0.2?,再作用一次后得到∣?0.8?|-0.8 \rangle∣?0.8?,而?0.8-0.8?0.8不可能是N^\hat NN^的特征值。
創生算符
現在考慮A^?\hat A^{\dag}A^?對∣n?|n \rangle∣n?的作用,記∣??=A^?|\phi \rangle=\hat A^{\dag}∣??=A^?對∣n?|n \rangle∣n?,則
??∣??=?n∣A^A^?∣n?=?n∣(1+A^?A^)∣n?=n+1\langle \phi |\phi \rangle = \langle n | \hat A \hat A^{\dag} | n \rangle = \langle n |(1+\hat A ^{\dag} \hat A)|n \rangle=n+1??∣??=?n∣A^A^?∣n?=?n∣(1+A^?A^)∣n?=n+1
也就是說∣??|\phi \rangle∣??也沒有標準化,但它同樣屬于N^\hat NN^的某個特征子空間:
N^∣??=A^?A^A^?∣n?=A^?(1+A^?A^)∣n?=(n+1)∣??\hat N |\phi \rangle = \hat A^{\dag} \hat A \hat A^{\dag} | n \rangle = \hat A^{\dag}(1+\hat A^{\dag}\hat A)|n \rangle = (n+1)|\phi \rangleN^∣??=A^?A^A^?∣n?=A^?(1+A^?A^)∣n?=(n+1)∣??
所以(推導和∣ψ?|\psi \rangle∣ψ?的完全一樣,就不詳細寫了)
∣??=n+1∣n+1?|\phi \rangle = \sqrt{n+1}|n+1 \rangle∣??=n+1?∣n+1?
綜上可以得到N^\hat NN^的本征態的兩個遞推關系:?n∈Z∩R+\forall n \in \mathbb{Z} \cap \mathbb{R}^+?n∈Z∩R+
A^?∣n?=n+1∣n+1?A^∣n?={n∣n?1?,n>00,n=0\hat A^{\dag} | n \rangle = \sqrt{n+1}|n+1 \rangle \\ \hat A| n \rangle= \begin{cases} \sqrt{n}|n-1 \rangle , n> 0 \\ 0, n = 0 \end{cases}A^?∣n?=n+1?∣n+1?A^∣n?={n?∣n?1?,n>00,n=0?
所以
∣n?=1n!(A^?)n∣0?| n \rangle = \frac{1}{\sqrt{n!}}(\hat A^{\dag})^n |0 \rangle∣n?=n!?1?(A^?)n∣0?
階梯算符的特征方程
最后我們討論一下A^\hat AA^與A^?\hat A^{\dag}A^?的本征態。用{∣n?}\{|n \rangle\}{∣n?}作為基,它的closure relation為
1^=∑n=0+∞∣n??n∣\hat 1 = \sum_{n=0}^{+\infty} | n \rangle \langle n |1^=n=0∑+∞?∣n??n∣
假設A^\hat AA^的特征方程為
A^∣α?=α∣α?\hat A | \alpha \rangle = \alpha | \alpha \rangleA^∣α?=α∣α?
則
∣α?=∑n=0+∞∣n??n∣α?=∑n=0+∞cn∣n?|\alpha \rangle = \sum_{n=0}^{+\infty} | n \rangle \langle n | \alpha \rangle = \sum_{n = 0}^{+\infty} c_n |n \rangle∣α?=n=0∑+∞?∣n??n∣α?=n=0∑+∞?cn?∣n?
其中cn=?n∣α?c_n = \langle n | \alpha \ranglecn?=?n∣α?,代入到特征方程:
A^∣α?=A^∑n=0+∞cn∣n?=c0A^∣0?+∑n=1+∞cnA^∣n?=0+∑n=1+∞cnn∣n?1?=∑n=0+∞cn+1n∣n?1?=α∑m=0+∞cm∣m?\hat A | \alpha \rangle = \hat A \sum_{n = 0}^{+\infty} c_n |n \rangle = c_0 \hat A | 0 \rangle + \sum_{n=1}^{+\infty} c_n \hat A | n \rangle \\ = 0+ \sum_{n=1}^{+\infty} c_n \sqrt{n} | n-1 \rangle = \sum_{n=0}^{+\infty} c_{n+1}\sqrt{n} | n -1 \rangle = \alpha \sum_{m = 0}^{+\infty} c_m |m \rangle A^∣α?=A^n=0∑+∞?cn?∣n?=c0?A^∣0?+n=1∑+∞?cn?A^∣n?=0+n=1∑+∞?cn?n?∣n?1?=n=0∑+∞?cn+1?n?∣n?1?=αm=0∑+∞?cm?∣m?
要使對應右矢的系數相等,需要
cn+1n=αcn?cn=αnn!c0c_{n+1}\sqrt{n} = \alpha c_n \Rightarrow c_n = \frac{\alpha^n}{\sqrt{n!}}c_0cn+1?n?=αcn??cn?=n!?αn?c0?
所以
∣α?=c0∑n=0+∞αnn!∣n?|\alpha \rangle = c_0 \sum_{n=0}^{+\infty} \frac{\alpha^n}{\sqrt{n!}} | n \rangle∣α?=c0?n=0∑+∞?n!?αn?∣n?
標準化條件是
?α∣α?=1=∑m∑nc0c0?αn(α?)mn!m!?m∣n?=∑m∑nc0c0?αn(α?)mn!m!δmn=∣c0∣2∑n=0+∞∣α∣2nn!=∣c0∣2e∣α∣2\langle \alpha | \alpha \rangle = 1 = \sum_m \sum _n c_0c_0^* \frac{\alpha^n (\alpha^*)^m}{\sqrt{n!m!}} \langle m | n \rangle \\ = \sum_m \sum _n c_0c_0^* \frac{\alpha^n (\alpha^*)^m}{\sqrt{n!m!}} \delta_{mn} = |c_0|^2\sum_{n=0}^{+\infty} \frac{|\alpha|^{2n}}{n!} = |c_0|^2 e^{|\alpha|^2}?α∣α?=1=m∑?n∑?c0?c0??n!m!?αn(α?)m??m∣n?=m∑?n∑?c0?c0??n!m!?αn(α?)m?δmn?=∣c0?∣2n=0∑+∞?n!∣α∣2n?=∣c0?∣2e∣α∣2
于是,假設c0>0c_0>0c0?>0,
c0=e?∣α∣22∣α?=e?∣α∣22∑n=0+∞αnn!∣n?c_0 = e^{-\frac{|\alpha|^2}{2}} \\ |\alpha \rangle = e^{-\frac{|\alpha|^2}{2}} \sum_{n=0}^{+\infty} \frac{\alpha^n}{\sqrt{n!}} | n \ranglec0?=e?2∣α∣2?∣α?=e?2∣α∣2?n=0∑+∞?n!?αn?∣n?
總結
以上是生活随笔為你收集整理的UA OPTI570 量子力学17 创生算符与湮灭算符的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: UA OPTI570 量子力学 恒等算符
- 下一篇: UA OPTI570 量子力学18 量子