【Python学习系列二十七】pearson相关系数计算
生活随笔
收集整理的這篇文章主要介紹了
【Python学习系列二十七】pearson相关系数计算
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
場景:計算訓練特征和目標之間的相關系數,用于判斷是否加入訓練。
參考代碼:
# -*- coding: utf-8 -*-import pandas as pd import time from sklearn import tree import numpy as np from sklearn import metrics from sklearn.linear_model import LinearRegression from scipy.stats import pearsonr from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import f_regressiondef main():#加載標記數據label_ds=pd.read_csv(r"link_train_0726.txt",sep='\t',encoding='utf8',\names=['link_id','length','width','link_class','start_date','week','time_interval','time_slot','travel_time',\'avg_travel_time','sd_travel_time','inlinks_num','outlinks_num']) label_ds["link_id"] = label_ds["link_id"].astype("string")label_ds["length"] = label_ds["length"].astype("int")label_ds["width"] = label_ds["width"].astype("int")label_ds["link_class"] = label_ds["link_class"].astype("int")label_ds["start_date"] = label_ds["start_date"].astype("string")label_ds["week"] = label_ds["week"].astype("int")label_ds["time_interval"] = label_ds["time_interval"].astype("string")label_ds["time_slot"] = label_ds["time_slot"].astype("int")label_ds["travel_time"] = label_ds["travel_time"].astype("float")label_ds["avg_travel_time"] = label_ds["avg_travel_time"].astype("float")label_ds["sd_travel_time"] = label_ds["sd_travel_time"].astype("float")label_ds["inlinks_num"] = label_ds["inlinks_num"].astype("int")label_ds["outlinks_num"] = label_ds["outlinks_num"].astype("int")#加載預測數據 unlabel_ds=pd.read_csv(r"link_test_0726.txt",sep='\t',encoding='utf8',\names=['link_id','length','width','link_class','start_date','week','time_interval','time_slot',\'avg_travel_time','sd_travel_time','inlinks_num','outlinks_num']) unlabel_ds["link_id"] = unlabel_ds["link_id"].astype("string")unlabel_ds["length"] = unlabel_ds["length"].astype("int")unlabel_ds["width"] = unlabel_ds["width"].astype("int")unlabel_ds["link_class"] = unlabel_ds["link_class"].astype("int")unlabel_ds["start_date"] = unlabel_ds["start_date"].astype("string")unlabel_ds["week"] = unlabel_ds["week"].astype("int")unlabel_ds["time_interval"] = unlabel_ds["time_interval"].astype("string")unlabel_ds["time_slot"] = unlabel_ds["time_slot"].astype("int")unlabel_ds["avg_travel_time"] = unlabel_ds["avg_travel_time"].astype("float")unlabel_ds["sd_travel_time"] = unlabel_ds["sd_travel_time"].astype("float")unlabel_ds["inlinks_num"] = unlabel_ds["inlinks_num"].astype("int")unlabel_ds["outlinks_num"] = unlabel_ds["outlinks_num"].astype("int")#提取訓練集、驗證集、測試集train_df=label_ds.loc[(pd.to_datetime(label_ds["start_date"])<'2016-06-01')]#訓練集print "訓練集,有", train_df.shape[0], "行", train_df.shape[1], "列"valid_df=label_ds.loc[(pd.to_datetime(label_ds["start_date"])>='2016-06-01')]#驗證集train_df.sample(frac=0.2)print "驗證集,有", valid_df.shape[0], "行", valid_df.shape[1], "列"test_df=unlabel_ds#測試集print "測試集,有", test_df.shape[0], "行", test_df.shape[1], "列"#特征選擇p_X=train_df['outlinks_num']#訓練屬性p_Y=train_df['travel_time']#目標屬性p_value=pearsonr(p_X,p_Y)print p_value#選擇相關性最強的k個特征參與訓練#k_feature = f_regression(p_X,p_Y)#k_fearture=SelectKBest(lambda X, Y: np.array(map(lambda x:pearsonr(x, Y), X.T)).T, k=9).fit_transform(p_X, p_Y)#print k_fearture#模型訓練train_X=train_df[['length','width','link_class','week','time_slot','avg_travel_time']]train_y = train_df['travel_time']#標記model_lr=LinearRegression()#tree.DecisionTreeRegressor()model_lr.fit(train_X, train_y) #模型驗證valid_X=valid_df[['length','width','link_class','week','time_slot','avg_travel_time']]valid_y=valid_df['travel_time']pre_valid_y=model_lr.predict(valid_X)abs_y=abs(pre_valid_y-valid_y)abs_error=abs_y.sum()#求和#abs_error=sum(list(abs_y))#求和print "mape:",abs_error/valid_df.shape[0]print "RMSE:",np.sqrt(metrics.mean_squared_error(valid_y, pre_valid_y))#均方差,模型評估#模型預測test_X = test_df[['length','width','link_class','week','time_slot','avg_travel_time']] test_info = test_df[['link_id','start_date','time_interval']] test_X=test_X.fillna(0)#空值替換為0test_y=model_lr.predict(test_X) pre_test_y=pd.DataFrame(test_y,columns=['travel_time']) outset=test_info.join(pre_test_y,how='left')#輸出結果 #outset["travel_time"]=outset["travel_time"].apply(lambda x: '{0:.3f}'.format(x))outset.to_csv('outit.txt',sep='#',index=False,header=None)#輸出預測數據 #執行 if __name__ == '__main__': start = time.clock() main()end = time.clock() print('finish all in %s' % str(end - start))pearsonx函數的說明:https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html
scikit-learn庫中:f_regression和SelectKBest用于選擇最佳特征訓練,可以批量給出前k個特征。
總結
以上是生活随笔為你收集整理的【Python学习系列二十七】pearson相关系数计算的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 【正一专栏】内马尔留不留下都已经是伤痕累
- 下一篇: 【正一专栏】孙杨累了就休息下吧!放弃也是